www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Beweis von Primzahl
Beweis von Primzahl < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von Primzahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 Di 31.10.2006
Autor: kleine-Elfe

Hallöchen, ich sitze hier an der Aufgabe. Kann mir bitte jemand bei der Lösung helfen?

Sei m [mm] \in \IN [/mm] * = {1,2,3,...} und n [mm] \in \IN [/mm] . Man definiert:
m | n : [mm] \gdw \exists [/mm] k [mm] \in \IN [/mm] : n=km.
In diesem Fall sagt man "m teilt n" oder "m ist Teiler von n".
Man beweise für p [mm] \in \IN [/mm] , p > 1 :
p ist genau dann eine Primzahl, wenn für je zwei Zahlen m,n [mm] \in \IN [/mm] gilt:
p | mn [mm] \Rightarrow [/mm] p | m oder p | n.

Danke schonmal im Voraus!!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis von Primzahl: Zahlen in Primfaktoren zerlege
Status: (Antwort) fertig Status 
Datum: 18:33 Di 31.10.2006
Autor: moudi

Hallo kleine-Elfe

Vielleicht solltest du die Tatsache verwenden, dass sich jede Zahl eindeutig als Produkt
von Primzahlen schreiben lässt.

Dann sollte es nicht so schwer sein.

mgG Moudi

Bezug
                
Bezug
Beweis von Primzahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Di 31.10.2006
Autor: peter_d

Ich habe auch diese Frage und komme auch nicht weiter :-)
Vllt könntest du ja deinen Tipp mal etwas näher erläutern. DAnke.

Bezug
                        
Bezug
Beweis von Primzahl: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Do 02.11.2006
Autor: moudi

Hallo Peter

Wenn eine Primzahl p die Zahl a teilt und sich a eindeutig als Produkt von Primzahlen schreiben lässt, so muss p in diesem Primzahlprodukt als Faktor auftauchen.
Denn p teilt a heisst, [mm] $\exists [/mm] k$ so dass [mm] $a=p\cdot [/mm] k$, und da sich k als Prodkukt von Primzahlen schreiben lässt [mm] $k=p_1\cdot\dots\cdot p_l$ [/mm] gilt [mm] $a=p\cdot p_1\cdot\dots\cdot p_l$. [/mm] Wegen der Eindeutigkeit der Primzahldarstellung taucht daher p in der Primfaktorzerlegung von a auf.

Teilt p die Zahl [mm] $m\cdot [/mm] n$, so taucht p in der Primfaktorzerlegung von [mm] $m\cdot [/mm] n$ auf.
Andrerseits lässt sich aus den Primfaktorzerlegungen von m und n eine Primfaktorzerlegung von [mm] $m\cdot [/mm] n$ herstellen. Wiederum muss dann wegen der Eindeutigkeit der Primfaktorzerlegung p in der Primfaktorzerlegung von m oder in der  Primfaktorzerlegung von n auftauchen.

Daher habe ich bewiesen: Wenn p eine Primzahl ist, so folgt aus p|mn [mm] $\Rightarrow$ [/mm] p|m oder p|n.

Ist umgekehrt p keine Primzahl, dass heisst [mm] $p=m\cdot [/mm] n$ mit m,n>1, dann teilt p das Produkt [mm] $n\cdot [/mm] n$ aber p teilt keine der Zahlen m und n.

mfG Moudi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de