www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Beweis windschief
Beweis windschief < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis windschief: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 So 26.04.2009
Autor: kuemmelsche

Aufgabe
In einem n-dimensionalen affinen Raum seien eine Hyperebene H
und eine beliebige Ebene E gegeben durch die Koordinatengleichungen [mm] \overline{H}\overline{x} [/mm] = [mm] \overline{h} [/mm] und [mm] \overline{E}\overline{x}=\overline{e}. [/mm]
Zeigen Sie: E und H sind nicht windschief.

Hallo zusammen,

Ich würde mich freuen, wenn ihr meinem Beweis auf Sauberkeit und Vollständigkeit prüft!

Nur eine Frage vorweg:
Es müssen doch eig die beiden Ebenen, die windschief sein wollen zumindest die gleiche dim haben. Darf ich das voraussetzten?

dim A = n, dim H = n-1, o.B.d.A sei dim E = m, H = [mm] A_1 \vee A_2 \vee...\vee A_{n-1} [/mm] und  E = [mm] A_1' \vee A_2' \vee...\vee A_{m}' [/mm] (Die Striche sind nur wegen möglicher Umsortierung dran.)

1. Fall $m [mm] \le [/mm] n$ [mm] \Rightarrow \exists A_i [/mm] mit [mm] $A_i \in [/mm] E  [mm] \cap [/mm] H$ [mm] \Rightarrow [/mm] E [mm] \cap [/mm] H [mm] \not= \emptyset [/mm]

2. Fall $m>n$ [mm] \Rightarrow [/mm] V(E) [mm] \supset [/mm] V(H) [mm] \Rightarrow [/mm] sind parallel

Geht das so, oder haut das gar nicht hin?

lg Kai

        
Bezug
Beweis windschief: Antwort
Status: (Antwort) fertig Status 
Datum: 08:16 Mo 27.04.2009
Autor: angela.h.b.


> In einem n-dimensionalen affinen Raum seien eine Hyperebene
> H
>  und eine beliebige Ebene E gegeben durch die
> Koordinatengleichungen [mm]\overline{H}\overline{x}[/mm] =
> [mm]\overline{h}[/mm] und [mm]\overline{E}\overline{x}=\overline{e}.[/mm]
>  Zeigen Sie: E und H sind nicht windschief.
>  
> Hallo zusammen,
>  
> Ich würde mich freuen, wenn ihr meinem Beweis auf
> Sauberkeit und Vollständigkeit prüft!
>
> Nur eine Frage vorweg:
>  Es müssen doch eig die beiden Ebenen, die windschief sein
> wollen zumindest die gleiche dim haben. Darf ich das
> voraussetzten?

Hallo,

guck mal nach, was Ihr bei Euch definiert habt.

Ich kenne es nämlich nicht anders, als daß als "Ebene"  zweidimensionale Teilräume bezeichnet werden.

Du sollst also zeigen, daß der n-1 dimensionale Teilraum H und der zweidimensionale Teilraum E nicht windschief sein können.
Das bedeutet: sie sind parallel oder sie schneiden sich.


Um von "windschief" zu reden, müssen die Teilräume nicht dieselbe Dimension haben. Wenn zwei Teilräume weder parallel sind noch sich schneiden, dann heißen sie "windschief".

>  
> dim A = n, dim H = n-1, o.B.d.A sei dim E = m, H = [mm]A_1 \vee A_2 \vee...\vee A_{n-1}[/mm]
> und  E = [mm]A_1' \vee A_2' \vee...\vee A_{m}'[/mm] (Die Striche
> sind nur wegen möglicher Umsortierung dran.)

Ich verstehe die Schreibweise nicht richtig:

soll

> H=[mm]A_1 \vee A_2 \vee...\vee A_{n-1}[/mm]

bedeuten, daß H von den [mm] A_i [/mm] erzeugt wird?

> nur wegen möglicher Umsortierung dran.)

Aber es ist doch nirgends gesagt, daß E eine Teilmenge von H sein soll.

Du mußt Deine Lösung umarbeiten.


Möglicherweise bist Du bzgl. der affinen Teilräume noch irgendwie auf dem falschen Trip.
Du kennst affine Teilräume bereits aus der Schule.
Gehen wir in den [mm] \IR^3. [/mm]
Seine zweidimensionalen affinen Teiltäume sind sämtliche Ebenen, die eindimensionalen sämtliche Geraden.

Gruß v. Angela











>  
> 1. Fall [mm]m \le n[/mm] [mm]\Rightarrow \exists A_i[/mm] mit [mm]A_i \in E \cap H[/mm]
> [mm]\Rightarrow[/mm] E [mm]\cap[/mm] H [mm]\not= \emptyset[/mm]
>  
> 2. Fall [mm]m>n[/mm] [mm]\Rightarrow[/mm] V(E) [mm]\supset[/mm] V(H) [mm]\Rightarrow[/mm] sind
> parallel
>  
> Geht das so, oder haut das gar nicht hin?
>  
> lg Kai


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de