www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Beweis zu Determinante
Beweis zu Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zu Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:43 Mi 16.11.2011
Autor: gnom347

Aufgabe
Sei A eine m x n Matrix und B eine n x m Matrix , mit m>n
Zeigen sie det(AB)=0

Ich komme bei der Aufgabe nicht so recht weiter.
also (AB) ist ja eine m x m matrix.
Ich nehme an für A und B ist eine determinante nicht definiert, da die determinante ja nur auf quadratische matrizen definiert ist.
Hab wirklich keine Beweisidee kann mir jemand nen tipp geben?


        
Bezug
Beweis zu Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Do 17.11.2011
Autor: Schadowmaster

moin gnom,

Ich nehme mal an du bewegst dich über einem Körper?
Also etwa [mm] $\IR$ [/mm] zum Beispiel?
Dann arbeite hier am besten mit dem Rang.
Was weißt du über den Rang einer Matrix, wenn ihre Determinante ungleich 0 wäre?
Ist dies in diesem Fall möglich?
Hast du irgendwo im Skript eine Formel, eine Abschätzung, etwas in der Form "Wenn A den Rang a hat und B den Rang b, dann hat AB höchstens den Rang..." ?

Wenn du da ein wenig in deinem Skript blätterst und falls du den entsprechenden Satz schon hattest dürfte der Beweis kein all zu großes Problem werden.

lg

Schadow

Bezug
                
Bezug
Beweis zu Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:12 Do 17.11.2011
Autor: gnom347

Nein leider hat die vorlesung bei uns eine seltsame reihenfolge
Wir haben angefangen mit gleichungsysteme.
Dann haben wir matrizen eingeführt:
invertieren von matrizen mittels Elementarmatrizen
Und dan haben wir schon mit der definition der determinante angefangen. Wobei wir die existens der Determinant noch nicht gezeig haben.
Wir haben lediglich gesagt, welche eigenschaften die Determinante haben soll.
Für die Aufgabe ist wohl interresant Det [mm] (A)\not= [/mm] 0 [mm] \gdw [/mm] A ist Invertierbar.
Also ich soll wohl zeigen , dass (AB) nicht invertierbar ist. Aber wie mache ich das ?

Bezug
                        
Bezug
Beweis zu Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 06:59 Do 17.11.2011
Autor: fred97

A und B kannst Du doch als lineare Abbildungen Auffasen:

[mm] A:\IR^n \to \IR^m, [/mm]  B: [mm] \IR^m \to \IR^n. [/mm]

Nimm an, es sei det(AB) [mm] \ne [/mm] 0. Dann ist die Abb. AB: [mm] \IR^m \to \IR^m [/mm] bijektiv.

Sei x [mm] \in [/mm] Kern(B), also Bx=0. Dann ist auch ABx=0 und somit x=0.

Wir haben also: Kern(B)={ 0 }.

Jetzt bemühe den Dimensionssatz für lineare Abbildungen und Du erhältst einen Widerspruch.

FRED

Bezug
                                
Bezug
Beweis zu Determinante: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:18 Do 17.11.2011
Autor: gnom347

Ja den Beweis würde ich auch hinbekommen aber wir haben Alle diese begriffe nicht eingeführt.
Wir haben noch keine Lineare abbildungen eingeführt.Somit kann ich auch nicht über die Dimension Der Abbildungen (Matrizen) Argumentieren.

Ich denke das es üblich ist in der Lineare algebra erst Vektorräume einzuführen um dan Matrizen als Lineare Abbildungen Zwichen VR aufzufassen.
Aber dies ist bei uns nicht geschehen.
Wir haben angefangen mit Linearen gleichungsystemen...Haben Festgestellt  wann sie lösbar sind etc.
m x n Matrizen wurden dan einfach eingeführt als anordnung von zahlen die in einem schema der Form eines Rechtecks angeornet werden. Diese Schema besteht aus m zeilen und n spalten.
Dann wurden Elementarmatrizen eingeführt sowie der zusammenhang von gleichungssystemen zu matrizen.
Ausserdem haben wir festgestellt wann eine Matrix invertierbar ist.
Anschliesend haben wir angefangen die Determinante einzuführen mit dem der vorgabe das det(a)=0  [mm] \gdw [/mm] A ist invertierbar gelten soll.
Ich muss also irgendwie zeigen das (AB) nicht invertierbar ist.



Bezug
                                        
Bezug
Beweis zu Determinante: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Sa 19.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de