www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Beweis zu Teilern
Beweis zu Teilern < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zu Teilern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:11 Fr 20.07.2007
Autor: clarakami

Hallo, habe schon einiges versucht, komme aber nicht weiter:

Es sei p [mm] \not= [/mm] 2, 5 eine Primzahl. Es soll gezeigt werden, dass dann die Dezimaldarstellung vom Bruch 1/p eine Periodenlänge n hat, die Teiler von p-1 ist.

zB p = 7, dann ist 1/7 = 0,0,1428571428.... , dh n = 6, und 6 ist Teiler von 7-1.

Aber wie kann man das zeigen?? Freu mich über jeden Lösungsansatz!!

        
Bezug
Beweis zu Teilern: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Fr 20.07.2007
Autor: felixf

Hallo Clarakami!

> Es sei p [mm]\not=[/mm] 2, 5 eine Primzahl. Es soll gezeigt werden,
> dass dann die Dezimaldarstellung vom Bruch 1/p eine
> Periodenlänge n hat, die Teiler von p-1 ist.
>  
> zB p = 7, dann ist 1/7 = 0,1428571428.... , dh n = 6, und
> 6 ist Teiler von 7-1.
>  
> Aber wie kann man das zeigen?? Freu mich über jeden
> Lösungsansatz!!

Also Teiler von $p - 1$ ist schonmal ein guter Hinweis auf den Satz von Lagrange angewendet auf Untergruppen der multiplikativen Gruppe von [mm] $\IZ/p\IZ$. [/mm]

So, nun zum Problem. Die $n$-te Ziffer der Dezimalbruchentwicklung erhaelst du, indem du wie folgt vorgehst: den ersten Rest setze per Definition auf $1$.

Dann machst du immer den Rest mal 10, nennen wir das mal $x$, und teilst $x$ durch $p$ mit neuem Rest $r$. Dann ist der neue Quotient die naechste Ziffer, und mit dem neuen Rest machst du weiter.

Die Ziffern zu berechnen ist also das gleiche, wie die Ordnung von 10 in der multiplikativen Gruppe [mm] $\IZ/p\IZ$ [/mm] zu berechnen, und die Periode ist ein Teiler der Ordnung. Und die Ordnung ist nach dem Satz von Lagrange ein Teiler der Kardinalitaet der multiplikativen Gruppe von [mm] $\IZ/p\IZ$, [/mm] also von $p - 1$.

Jetzt musst du dir nur noch ueberlegen, warum die naechste Ziffer wirklich so aussieht, und das mit der Periode richtig begruenden :)

LG Felix


Bezug
                
Bezug
Beweis zu Teilern: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Fr 20.07.2007
Autor: clarakami

Vielen Dank, ich versuch das mal!!!

Bezug
                        
Bezug
Beweis zu Teilern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 Sa 21.07.2007
Autor: annoe

Also ich habe mir die aufgabe auch mal durchgelesen, und komme garnicht weiter! könnt ihr das vll noch ein bisschen an dem beispielt mal erklären? woher kommt die 10 und was für ein rest, was soll das überhaupt für eine periode sein???

wäre euch sehr dankbar.

Bezug
                                
Bezug
Beweis zu Teilern: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Sa 21.07.2007
Autor: angela.h.b.


> Also ich habe mir die aufgabe auch mal durchgelesen, und
> komme garnicht weiter. könnt ihr das vll noch ein bisschen
> an dem beispielt mal erklären?

Hallo,

es geht um die Darstellung des Kehrwertes einer Primzahl als Dezimalzahl und die größte Periodenläge, die hierbei vorkommen kann.

Berechne doch mal ein paar.

> woher kommt die 10

Weil's um das Dezimalsystem geht, um die  Darstellung  von 1/p  als [mm] \summe a_i10^{-i}. [/mm]

und was

> für ein rest,

Den Rest, der bei der Division durch p bleibt.

was soll das überhaupt für eine periode

> sein???

???

Die Periodenlänge in der Darstellung als Dezimalzahl.

Gruß v. Angela

Bezug
                                        
Bezug
Beweis zu Teilern: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Sa 21.07.2007
Autor: felixf

Hallo Angela

> > und was für ein rest,
>  
> Den Rest, der bei der Division durch 10 bleibt.

...fast: es geht um den Rest bei Division durch $p$. Der Rest wird dann mit 10 multipliziert, und man macht wieder Division mit Rest durch $p$, und so weiter...

LG Felix


Bezug
        
Bezug
Beweis zu Teilern: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Mo 23.07.2007
Autor: DirkG

Den Nachweis bekommt man auch ohne allzu viel Gruppentheorie sehr schnell aus dem kleinen Satz von Fermat: Wegen [mm] $p\neq 2,\; [/mm] 5$ ist [mm] $10^{p-1}\equiv 1\mod [/mm] p$, d.h., [mm] $a:=\frac{10^{p-1}-1}{p}$ [/mm] ist eine ganze Zahl, die die Darstellung
[mm] $$\frac{1}{p} [/mm] = [mm] \frac{a}{10^{p-1}-1} [/mm] = [mm] a\cdot \sum_{k=1}^{\infty} 10^{-k(p-1)}$$ [/mm]
ermöglicht, d.h. einen periodischen Dezimalbruch mit Periode $a$ der Periodenlänge $(p-1)$ (eventuell führende Nullen bei $a$ anfügen, um auf die Länge $(p-1)$ zu kommen).

Wenn man nun irgendeine Periodenlänge hat, dann ist die kleinste Periodenlänge bekanntlich ein Teiler davon.


Beispiel: $p=13$, da ist dann [mm] $\frac{10^{12}-1}{13} [/mm] = 76923076923$ und nach obigen Überlegungen [mm] $\frac{1}{13} [/mm] = [mm] 0,\overline{076923076923}$. [/mm] An dem Beispiel sieht man auch gleich, dass 12 zwar Periodenlänge, aber nicht kürzeste Periodenlänge ist. Die ist gleich 6 mit Darstellung [mm] $\frac{1}{13} [/mm] = [mm] 0,\overline{076923}$. [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de