www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Beweise
Beweise < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 So 21.10.2012
Autor: mala11

Aufgabe
Seien x,y [mm] \in \IR [/mm] mit x [mm] \not= [/mm] 0 und es gelte
x+ 1/x = y.
Zeigen, dass
x³+ 1/3³ =y³-3y

Ich weiß einfach nicht weiter. ich sitze da jetzt seit 5 Stunden dran und es ergibt einfach keinen Sinn. Bitte helft mir.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweise: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 So 21.10.2012
Autor: Richie1401

Hallo und herzlich Willkommen :)

> Seien x,y [mm]\in \IR[/mm] mit x [mm]\not=[/mm] 0 und es gelte
>  x+ 1/x = y.
>  Zeigen, dass
>  [mm] x^2+ (1/3)^3 =y^3-3y [/mm]
>  Ich weiß einfach nicht weiter. ich sitze da jetzt seit 5
> Stunden dran und es ergibt einfach keinen Sinn. Bitte helft
> mir.

Nutze bitte nicht die Drittbelegungen der Tastatur, um die Hochzahlen zu erzeugen. Das kann zu Anzeigeschwierigkeiten kommen. Nutze dafür das Hochzeichen oben link auf der Tatstur und dann normal die Zahl.


Es gelte also [mm] x+\frac{1}{x}=y [/mm]     (*)

Zu zeigen: [mm] x^2+(1/3)^3=y^3-3y [/mm]     (**)

Hast du denn schon einmal (*) in (**) eingesetzt?
[mm] x^2+(1/3)^3=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right) [/mm]

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

P.S. Übrigens stimmt das auch nicht. Ist die Aufgabe wirklich so gestellt?

Bezug
                
Bezug
Beweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:29 So 21.10.2012
Autor: mala11

Entschuldige, dass ich so lange gebraucht habe für die Antwort, habe nämlich gerade erfahren das die Aufgabenstellung falsch ist.
Es hätte lauten müssen:

Seien x,y [mm] \in \IR [/mm] mit [mm] x\not= [/mm] 0 und es gelte

x+(1/x)=y

zeige, dass

[mm] x^3+(1/x^3)=y^3-3y [/mm]


Und vielen, vielen lieben Dank für deine Hilfe!!! Ich war schon so am verzweifeln. =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de