www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Beweise an Abbildungen
Beweise an Abbildungen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise an Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Sa 21.10.2006
Autor: Leader

Aufgabe
Seien X, Y Mengen, sei f : X [mm] \to [/mm] Y eine Abbildung und seien U, V Teilmengen von X. Zeigen Sie:

i) f(U [mm] \cup [/mm] V) = f(U) [mm] \cup [/mm] f(V)
ii) f(U [mm] \cap [/mm] V) [mm] \subseteq [/mm] f(U) [mm] \cap [/mm] f(V)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo,

Wir sollen die obige Aussage beweisen bzw. zeigen, dass das richtig ist. Mir fehlt allerdings hierbei der Ansatz. Gedanklich kann ich mir zwar vorstellen, dass die Aussagen stimmen (hab es auch einmal mit einem Venn-Diagramm probiert), aber ich weiß nicht, wie ich zeigen soll, dass das auch wirklich stimmt.

Meine einzige Vermutung wäre eine Wahrheitstabelle. Bin mir aber nicht ganz sicher, ob das in Bezug zu dieser Aufgabe wirklich geht und wie die dann aussehen müsste.

Hat jemand eine Idee, wie man so etwas zeigen/beweisen kann? Würde mir wirklich sehr helfen.

Freundliche Grüße,
Leader.



        
Bezug
Beweise an Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Sa 21.10.2006
Autor: angela.h.b.


> Seien X, Y Mengen, sei f : X [mm]\to[/mm] Y eine Abbildung und seien
> U, V Teilmengen von X. Zeigen Sie:
>  
> i) f(U [mm]\cup[/mm] V) = f(U) [mm]\cup[/mm] f(V)
>  ii) f(U [mm]\cap[/mm] V) [mm]\subseteq[/mm] f(U) [mm]\cap[/mm] f(V)

Hallo,

wen du die Gleichheit von Mengen zeigen möchtest, mußt Du zeigen, daß jede Teilmenge der anderen ist.

Also: für A=B ist zu zeigen
1) A [mm] \subseteq [/mm] B und
2) B [mm] \subseteq [/mm] A.

Wie zeigt man eine Teilmengenbeziehung C [mm] \subseteq [/mm] D?
Man zeigt, daß jedes x aus C auch in D liegt, also x [mm] \in [/mm] C ==> x [mm] \in [/mm] D.

Nun zur konkreten Aufgabe.
Zu zeigen ist
i) f(U [mm]\cup[/mm] V) = f(U) [mm]\cup[/mm] f(V)
Der Beweis spaltet sich in zwei Teile.
z.z. i1) f(U [mm]\cup[/mm] V) [mm] \subseteq [/mm] f(U) [mm]\cup[/mm] f(V)
z.z. i2) f(U) [mm]\cup[/mm] f(V) [mm] \subseteq [/mm]  f(U [mm]\cup[/mm] V)

zui1)
Sei y [mm] \in [/mm] f(U [mm]\cup[/mm] V)
==> es gibt ein x [mm] \in [/mm] U [mm]\cup[/mm] V mit f(x)=y
==> es gibt ein x [mm] \in [/mm] U mit f(x)=y oder es gibt ein x [mm] \in [/mm] V mit f(x)=y
==> y [mm] \in [/mm] f(U) oder y [mm] \in [/mm] f(V)
==> y [mm] \in [/mm] f(U) [mm] \cup [/mm] f(V).

Also ist f(U [mm]\cup[/mm] V) [mm] \subseteq [/mm] f(U) [mm]\cup[/mm] f(V).

Möglicherweise kommst Du jetzt schon mit dem Rest klar.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de