www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beweisen von Ungleichungen
Beweisen von Ungleichungen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisen von Ungleichungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:23 Do 03.11.2005
Autor: Stiffmaster

Hallo.
Meine Aufgabenstellung lautet:
Seien a,b,c,d Elemente eines angeordneten Körpers. Beweisen sie die Ungleichungen:

(a)   [mm] a^{2} [/mm] + [mm] b^{2} \ge [/mm] 2ab


Ich hab mir gedacht, dass ich das so umforme:

[mm] (a-b)^{2} \ge [/mm] 0

Und das ist ja eine wahre Aussage.

Ist das jetzt schon die Lösung? Oder muss ich wegen dem abgeschlossenem Körper noch was bedenken?

Danke für die Hilfe!

        
Bezug
Beweisen von Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Do 03.11.2005
Autor: Leopold_Gast

(Ein "abgeschlossener Körper" - was ist das?)

Du solltest anders herum argumentieren:

Wegen [mm](a-b)^2 \geq 0[/mm] folgt die zu beweisende Ungleichung (und nicht umgekehrt!).

Und das war es auch schon - in der Tat! Natürlich vorausgesetzt, ihr habt schon gezeigt, daß Quadrate in einem angeordneten Körper niemals negativ sind, und daß man mit Ungleichungen wie von dir ausgeführt rechnen darf.

Bezug
                
Bezug
Beweisen von Ungleichungen: Weitere Frage
Status: (Frage) beantwortet Status 
Datum: 10:40 Do 03.11.2005
Autor: Stiffmaster

Ups. Meinte natürlich nicht "abgeschlossen" sondern "angeordnet".

Jetzt komm ich aber bei der nächsten Aufgabe schon nicht weiter:

(b) [mm] a^{2} [/mm] + [mm] b^{2} [/mm] + [mm] c^{2} \ge [/mm] ab +bc +ca

Da bekomm ich noch nicht mal nen Ansatz hin. Hab überlegt, ob ich faktorisieren könnte. Geht aber nicht glaub ich.
Hat jemand einen Tip?

Bezug
                        
Bezug
Beweisen von Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 Do 03.11.2005
Autor: Didi

Hallo,

Nach Aufgabenteil a gilt ja:  [mm] a^2+b^2 \ge [/mm] 2ab ; [mm] b^2+c^2 \ge [/mm] 2bc ; [mm] c^2+a^2 \ge [/mm] 2ca

Wenn du diese 3 Gleichungen addierst, erhälst du: [mm] 2a^2+2b^2+2c^2\ge [/mm] 2ab+2bc+2ca  [mm] \gdw a^2+b^2+c^2 \ge [/mm] ab+bc+ca
Und damit bist du schon fertig.
                                            

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de