www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Beweisführung Abelsche Gruppe
Beweisführung Abelsche Gruppe < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisführung Abelsche Gruppe: Hilfe, Tipp
Status: (Frage) beantwortet Status 
Datum: 19:19 Sa 22.03.2014
Autor: DieNase

Aufgabe
Sind die folgenden Strukturen [mm] (X;\circ) [/mm] abelsche Gruppen?
(a) Sei [mm] \in \IN, [/mm] X = [mm] Z_{m} [/mm] und [mm] [x]_{m}\circ [y]_{m} [/mm] = [x + [mm] y]_{m}. [/mm]
(b) Sei m [mm] \in \IN, [/mm] X = [mm] Z_{m} [/mm] und [mm] [x]_{m} \circ [y]_{m} [/mm] = [x * [mm] y]_{m}. [/mm]
(c) Sei p eine Primzahl, X = [mm] Z_{p} \backslash {[0]_{p}} [/mm] und [mm] [x]_{p} \circ [/mm]  [mm] [y]_{p} [/mm] = [x * [mm] y]_{p}. [/mm]

Nunja eine Gruppe muss:
Assotiativgesetz
neutrales Element
inverses Element
haben
Abelsche Gruppe muss:
Kommutativgesetz erfüllen + Gruppen bedingungen.

Als muss ich zeigen:
([x + [mm] y]_{m}) +[c]_{m} [/mm] = [mm] [x]_{m} [/mm] + ([y + [mm] c]_{m}) [/mm]
Hier steh ich so bischen an. Naja ich weiß das es stimmt. Aber wie beweis ich das Jetzt?
gleiches für neutrales elment. Ja es gibt ein [mm] [0]_{m} [/mm] und dieses wird nichts verändern.
inverses elment? Ja. jede restklasse hat ist entweder mit sich selbst invers oder hat ein elment das das neutrale element rauskommt.
Kommutativ gesetz gilt auch. Insofern ist bsp a) eine Abelsche gruppe.

b ist keine und c muss wieder eine sein....

Bloß wie beweist man so etwas. Ist das erstemal das ich sowas zeigen muss und ehrlich gesagt steh ich an. ^^ Bei b kann ich leicht ein gegenbeispiel finden das eben nciht jedes element ein inverses hat.

        
Bezug
Beweisführung Abelsche Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Sa 22.03.2014
Autor: angela.h.b.


> Sind die folgenden Strukturen [mm](X;\circ)[/mm] abelsche Gruppen?
>  (a) Sei [mm]\in \IN,[/mm] X = [mm]Z_{m}[/mm] und [mm][x]_{m}\circ [y]_{m}[/mm] = [x
> + [mm]y]_{m}.[/mm]
>  (b) Sei m [mm]\in \IN,[/mm] X = [mm]Z_{m}[/mm] und [mm][x]_{m} \circ [y]_{m}[/mm] =
> [x * [mm]y]_{m}.[/mm]
>  (c) Sei p eine Primzahl, X = [mm]Z_{p} \backslash {[0]_{p}}[/mm]
> und [mm][x]_{p} \circ[/mm]  [mm][y]_{p}[/mm] = [x * [mm]y]_{p}.[/mm]
>  Nunja eine Gruppe muss:
>  Assotiativgesetz
>  neutrales Element
>  inverses Element
> haben
>  Abelsche Gruppe muss:
>  Kommutativgesetz erfüllen + Gruppen bedingungen.
>
> Als muss ich zeigen:
>  ([x + [mm]y]_{m}) +[c]_{m}[/mm] = [mm][x]_{m}[/mm] + ([y + [mm]c]_{m})[/mm]
>  Hier steh ich so bischen an. Naja ich weiß das es stimmt.
> Aber wie beweis ich das Jetzt?

Hallo,

fürs Assoziativgesetz in (a) ist zu zeigen

[mm] ([x]_m\circ [y]_m)\circ [z]_m=[x]_m\circ ([y]_m\circ [z]_m), [/mm]

und dies ist zu tun, indem Du die Definition der Verknüpfung verwendest und die Gesetze fürs Rechnen mit ganzen Zahlen:

[mm] ([x]_m\circ [y]_m)\circ [z]_m [/mm]

[mm] =[x+y]_m\circ [z]_m [/mm]

[mm] =[(x+y)+z]_m [/mm]

=...

> gleiches für neutrales elment. Ja es gibt ein [mm][0]_{m}[/mm] und
> dieses wird nichts verändern.

Dann schreib: [mm] [0]_m [/mm] ist neutrales Element, denn ...
Rechne vor, daß [mm] [0]_m [/mm] tut, was es tun soll:

Sei [mm] [x]_m\in \IZ/m\IZ. [/mm]

Es ist [mm] [0]_m+[x]_m=..., [/mm]

also...


> inverses elment? Ja. jede restklasse hat ist entweder mit
> sich selbst invers oder hat ein elment das das neutrale
> element rauskommt.

Sei [mm] [x]_m\in \IZ/m\IZ. [/mm]

Sag, welches Element man addieren muß, damit das neutrale herauskommt, und rechne vor, daß es funktioniert.

LG Angela

> Kommutativ gesetz gilt auch. Insofern ist bsp a) eine
> Abelsche gruppe.
>  
> b ist keine und c muss wieder eine sein....
>
> Bloß wie beweist man so etwas. Ist das erstemal das ich
> sowas zeigen muss und ehrlich gesagt steh ich an. ^^ Bei b
> kann ich leicht ein gegenbeispiel finden das eben nciht
> jedes element ein inverses hat.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de