www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Bez: eindim. Eigenvektor
Bez: eindim. Eigenvektor < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bez: eindim. Eigenvektor: korrekter Bezeichnung?
Status: (Frage) beantwortet Status 
Datum: 22:34 So 12.09.2010
Autor: Sandel

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Es sei I die Einheitsmatrix.
Ich betrachte einen beliebigen Zeilenvektor, der ja genau einen Eintrag "1" enthält. Kann man diesen als "eindimensionalen Vektor" bezeichnen, auch wenn er in einem höher dimensionalen Raum ist?

Was ist wenn der Zeilenvektor zwei "1" Einträge besitzt: Ist er dann auch "eindimensional", denn schließlich zeigt jeder Vektor in genau eine Richtung und es gilt die Invariante, dass jeder Zeilenvektor linear unabhängig ist.
Brauche die korrekte Bezeichnung für beide Fälle für die textliche Begründung.
Grüße & danke fürs Lesen
Sandel

        
Bezug
Bez: eindim. Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 Mo 13.09.2010
Autor: fred97


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Es sei I die Einheitsmatrix.
> Ich betrachte einen beliebigen Zeilenvektor, der ja genau
> einen Eintrag "1" enthält. Kann man diesen als
> "eindimensionalen Vektor" bezeichnen, auch wenn er in einem
> höher dimensionalen Raum ist?
>  
> Was ist wenn der Zeilenvektor zwei "1" Einträge besitzt:
> Ist er dann auch "eindimensional", denn schließlich zeigt
> jeder Vektor in genau eine Richtung und es gilt die
> Invariante, dass jeder Zeilenvektor linear unabhängig
> ist.
>  Brauche die korrekte Bezeichnung für beide Fälle für
> die textliche Begründung.
>  Grüße & danke fürs Lesen




Wenn Du einen Vekor $a [mm] \in \IR^n$ [/mm] hast und a [mm] \ne [/mm] 0 ist, so ist die lineare Hülle von a, also die Menge

                 [mm] $\{t*a: t \in \IR \}$ [/mm]

ein ein eindimensionaler Unterraum des [mm] \IR^n. [/mm]

a selbst nennt man nicht eindimensional.

FRED

>   Sandel


Bezug
                
Bezug
Bez: eindim. Eigenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Mo 13.09.2010
Autor: Sandel

ok, danke.
Bleibt noch die Frage nach einem passenden Begriff für Vektoren die einen, zwei, ... mehrere Einträge bzw Basisvektoren beinhalten.
Grüße
Sandel

Bezug
                        
Bezug
Bez: eindim. Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 Mo 13.09.2010
Autor: angela.h.b.


> ok, danke.
>  Bleibt noch die Frage nach einem passenden Begriff für
> Vektoren die einen, zwei, ... mehrere Einträge bzw
> Basisvektoren beinhalten.
>  Grüße
>   Sandel

Hallo,

[willkommenmr].

[mm] \vektor{1\\2\\3\\4} [/mm] ist ein Spaltenvektor mit 4 Einträgen.
Oder Du sagst: ein Element des [mm] \IR^4 [/mm] (bzw. [mm] \IQ^4 [/mm] bzw. [mm] \IC^4). [/mm]

Vektoren "beinhalten" keine Basisvektoren.
Und Vektoren haben keine Dimension.

Vektorräume werden von Basisvektoren aufgespannt.
Betrachten wir den Vektorraum, der von den drei Vektoren [mm] v_1:=\vektor{1\\1\\1\\1}, v_2:=\vektor{1\\1\\1\\0}, v_3:=\vektor{1\\1\\0\\0} [/mm] aufgespannt wird.
Die Vektoren [mm] v_1, v_2, v_3 [/mm] sind eine Basis ihrer linearen Hülle [mm] U:==\{a_1v_1+a_2v_2+a_3v_3| a_1, a_2, a_3\in \IR} [/mm]
Der Vektorraum U hat die Dimension 3 (auch wenn die Spaltenvektoren, die  in ihm sind, 4 Einträge haben.)
U ist ein dreidimensionaler Untervektorraum des [mm] \IR^4. [/mm]

Ich hoffe, daß ich Deine Frage richtig verstanden und verständlich beantwortet habe.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de