www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - Bezeichnungen in Physik
Bezeichnungen in Physik < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bezeichnungen in Physik: Erklärung
Status: (Frage) beantwortet Status 
Datum: 20:23 So 02.11.2014
Autor: havoc1

Aufgabe
Keine konkrete Aufgabe


Hallo,

ich bin Mathestudent und belege dieses Semester einen Physikkurs. Ich tue mich noch sehr schwer mit den Bezeichnungen der Physiker.

Was bedeutet:
[mm] d\dot\varphi [/mm]
Wobei Phi eine Funktion in Abhängigkeit eines Winkels ist.
Ich habe mittlerweile bemerkt das Physiker mit einem df
wohl in etwa folgendes meinen:
[mm] df=\bruch{f(x+h)-f(x)}{h} [/mm] * h
Wobei h klein ist. Also anschaulich ist wohl der Abstand von zwei nach beieinanderliegenden Punkten.
Ist das so richtig? Wie ist das dann bei einer Winkelfunktion zu verstehen?
[mm] d\varphi [/mm] würde ich als Änderung des Winkels interpretieren.
Die Version [mm] d\dot\varphi [/mm] könnte ich als Geschwindigkeit in einem Punkt vorstellen, aber so ganz sicher bin ich mir da jetzt nicht...

Ich bin für jeden Hinweis dankbar :)
Falls jemand einen Link für mich hat bei dem eine kurze Zusammenfassung zu den Bezeichnungen zu finden ist, wäre ich sehr dankbar.

        
Bezug
Bezeichnungen in Physik: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 So 02.11.2014
Autor: andyv

Hallo,

das ist keine physikinterne Bezeichnung.
Das Differenzial für stetig diffbare Funktionen $f: [mm] \IR \to \IR$ [/mm] im Punkt [mm] $x_0 \in \IR$ [/mm] ist definiert als die lineare Abbildung [mm] $df_{x_0}: \IR \to \IR, [/mm] \ h [mm] \mapsto f'(x_0)h$ [/mm] und es gilt:
[mm] $f(x_0+h)-f(x_0)$=\mathrm{d}f_{x_0}h+\|h\|\Phi(h)$, [/mm] wobei [mm] $\lim\limits_{h \to 0} \Phi(h)=0$, [/mm] d.h. das Differenzial ist eine lineare Approximation von der Funktionsänderung.

Also kannst du dir als [mm] d$\varphi$ [/mm] als kleine Aenderung von [mm] $\varphi$ [/mm] vorstellen und [mm] d$\dot{\varphi}$ [/mm] als kleine Aenderung der Winkelgeschwindigkeit.

Liebe Grüße

Bezug
                
Bezug
Bezeichnungen in Physik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Mo 03.11.2014
Autor: havoc1

Hi,

Danke ich habe mir das schon so in etwa gedacht.
Ich hätte noch eine Frage. Wenn man einen Vektor hat, z.B.
[mm] \overrightarrow{r} [/mm]
Was bedeutet dann einfach nur r? Die 2-Norm?

Bezug
                        
Bezug
Bezeichnungen in Physik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Mo 03.11.2014
Autor: chrisno

Ja, Länge, Betrag, Abstand.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de