www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Beziehung von Geraden
Beziehung von Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beziehung von Geraden: parallel, windschief, gleich
Status: (Frage) überfällig Status 
Datum: 20:30 Do 15.02.2007
Autor: matter

Aufgabe
Bestimmen Sie die Werte a,b,c so, dass gilt
g [mm] \parallel [/mm] h;
g = h;
g und h windschief zueinander;
g und h schneiden sich.

g: [mm] \vec{x} [/mm] = [mm] \vektor{a \\ -1 \\ 0} [/mm] + r [mm] \vektor{b \\ 1 \\ 3} [/mm]
h: [mm] \vec{x} [/mm] = [mm] \vektor{1 \\ 2 \\ 1} [/mm] + s [mm] \vektor{2 \\ c \\ -1} [/mm]

Also ich bin eigentlich relativ weit gekommen denk ich. Hier mal das was ich habe:

g [mm] \parallel [/mm] h:

[mm] \vektor{b \\ 1 \\ 3} [/mm] = [mm] \lambda \vektor{2 \\ c \\ -1} [/mm]

[mm] \lambda [/mm] =  -3

[mm] \Rightarrow [/mm] b = -6 ;   c = - [mm] \bruch{1}{3} [/mm]

g = h:

[mm] \Rightarrow [/mm] b = -6 ;   c = - [mm] \bruch{1}{3} [/mm]

[mm] \vektor{a \\ -1 \\ 0} [/mm] = [mm] \vektor{1 \\ 2 \\ 1} [/mm] + s [mm] \vektor{2 \\ - \bruch{1}{3} \\ -1} [/mm]

Aus der dritten Zeile gibts s = 1. Dann s in die 1. Zeile eingesetzt gibt

a = 3

g und h windschief zueinander:

So jetzt wirds kritischer. Es sollte 3 unterschiedliche Fälle geben die zu betrachten sind:

1. Fall: b = -6, c [mm] \not= [/mm] - [mm] \bruch{1}{3} [/mm]
2. Fall: b [mm] \not= [/mm] -6, c = - [mm] \bruch{1}{3} [/mm]
3. Fall: b [mm] \not= [/mm] -6, c [mm] \not= [/mm] - [mm] \bruch{1}{3} [/mm]



zum 1. Fall: b = -6, c [mm] \not= [/mm] - [mm] \bruch{1}{3} [/mm]

[mm] \vektor{a \\ -1 \\ 0} [/mm] + r [mm] \vektor{-6 \\ 1 \\ 3} [/mm] = [mm] \vektor{1 \\ 2 \\ 1} [/mm] + s [mm] \vektor{2 \\ c \\ -1} [/mm]

Aus der 3. Zeile ergibt sich s = 1-3r

Einsetzen in 1. Zeile:

a - 6r = 1+ 2 (1-3r)
a = 3

Somit müsste gelten, dass für alle a [mm] \not= [/mm] 3 und eben die vorher festgelegten Bedingungen b = -6, c [mm] \not= [/mm] - [mm] \bruch{1}{3} [/mm] die beiden Gerade windschief sind.



Zum 2. Fall: b [mm] \not= [/mm] -6, c = - [mm] \bruch{1}{3} [/mm]

[mm] \vektor{a \\ -1 \\ 0} [/mm] + r [mm] \vektor{b \\ 1 \\ 3} [/mm] = [mm] \vektor{1 \\ 2 \\ 1} [/mm] + s [mm] \vektor{2 \\ - \bruch{1}{3} \\ -1} [/mm]

3. Zeile liefert wieder  s = 1-3r

Eingesetzt in die 2. Zeile ergibt sich:

-1 + r = 2 + (1-3r) - [mm] \bruch{1}{3} [/mm]
-1 + r = 2 [mm] -\bruch{1}{3} [/mm] + r
-1      =  2 [mm] -\bruch{1}{3} [/mm]  falsche Aussage.

Das sollte bedeuten dass alle a [mm] \in \IR [/mm] zugelassen sind.

Also a [mm] \in \IR; [/mm] b [mm] \not= [/mm] -6; c = - [mm] \bruch{1}{3} [/mm]


zum 3. Fall: b [mm] \not= [/mm] -6, c [mm] \not= [/mm] - [mm] \bruch{1}{3} [/mm]

Jo da weiß ich nun nicht weiter. Irgendwie sollte es da ziemlich viele Kombinationsmöglichkeiten geben :-/


g und h schneiden sich:

Also zunächst müssen die Richtungsvektoren linear unabhängig sein:

1. Fall: b = -6, c [mm] \not= [/mm] - [mm] \bruch{1}{3} [/mm]
2. Fall: b [mm] \not= [/mm] -6, c = - [mm] \bruch{1}{3} [/mm]


zum 1. Fall: b = -6, c [mm] \not= [/mm] - [mm] \bruch{1}{3} [/mm]

a = 3

Aus der 3. Zeile ergibt sich r = - [mm] \bruch{1}{3} [/mm]  + [mm] \bruch{1}{3} [/mm]  s
Mit der 1. Zeile:

3 - 6r = 1 + 2s ergibt sich  s = 1 und somit r = 0

Nun kommt aus der 2. Zeile

c = -2

D.h. die Geraden schneiden sich wenn b = -6, a = 3 und c = -2



Zum 2. Fall: b [mm] \not= [/mm] -6, c = - [mm] \bruch{1}{3} [/mm]

Bereits bekannt, dass für c = -1/3 ein Schneiden nicht möglich ist.




Würde mich freuen, wenn mir jemand sagen könnte ob wenigstens einiges stimmt. Danke !

        
Bezug
Beziehung von Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Fr 16.02.2007
Autor: angela.h.b.


> Bestimmen Sie die Werte a,b,c so, dass gilt
> g [mm]\parallel[/mm] h;
> g = h;
> g und h windschief zueinander;
> g und h schneiden sich.
>  
> g: [mm]\vec{x}[/mm] = [mm]\vektor{a \\ -1 \\ 0}[/mm] + r [mm]\vektor{b \\ 1 \\ 3}[/mm]
>  
> h: [mm]\vec{x}[/mm] = [mm]\vektor{1 \\ 2 \\ 1}[/mm] + s [mm]\vektor{2 \\ c \\ -1}[/mm]
>  
> Also ich bin eigentlich relativ weit gekommen denk ich.
> Hier mal das was ich habe:
>  
> g [mm]\parallel[/mm] h:
>  
> [mm]\vektor{b \\ 1 \\ 3}[/mm] = [mm]\lambda \vektor{2 \\ c \\ -1}[/mm]
>  
> [mm]\lambda[/mm] =  -3
>  
> [mm]\Rightarrow[/mm] b = -6 ;   c = - [mm]\bruch{1}{3}[/mm]

Hallo,

das ist richtig.


>  
> g = h:

Dann sind sie parallel

>  
> [mm]\Rightarrow[/mm] b = -6 ;   c = - [mm]\bruch{1}{3}[/mm],

und außerdem liegt [mm] \vektor{a \\ -1 \\ 0\} [/mm] auf h.

>  
> [mm]\vektor{a \\ -1 \\ 0}[/mm] = [mm]\vektor{1 \\ 2 \\ 1}[/mm] + s [mm]\vektor{2 \\ - \bruch{1}{3} \\ -1}[/mm]
>  
> Aus der dritten Zeile gibts s = 1. Dann s in die 1. Zeile
> eingesetzt gibt
>  
> a = 3

Was machst Du mit der zweiten Zeile???




>  
> g und h windschief zueinander:

Ich würde das anders machen. Ich würde jetzt erst ausrechnen, wann die Geraden sich schneiden.

Und dann so argumentieren: in allen Fällen, in denen sie nicht parallel sind und sich nicht schneiden, sind sie windschief.


> g und h schneiden sich:
>  
> Also zunächst müssen die Richtungsvektoren linear
> unabhängig sein:

Also ist (b,c) [mm] \not= [/mm] (-6, [mm] -\bruch{1}{3}) [/mm]

>  
> 1. Fall: b = -6, c [mm]\not=[/mm] - [mm]\bruch{1}{3}[/mm]
>  2. Fall: b [mm]\not=[/mm] -6, c = - [mm]\bruch{1}{3}[/mm]

Du vergißt den dritten Fall

3.Fall: b [mm] \not= [/mm] -6, c [mm]\not=[/mm] - [mm][mm] \bruch{1}{3} [/mm]

>  
>
> zum 1. Fall: b = -6, c [mm]\not=[/mm] - [mm]\bruch{1}{3}[/mm]
>  
> a = 3

Und was ist, wenn a [mm] \not=3 [/mm] ?

>  
> Aus der 3. Zeile ergibt sich r = - [mm]\bruch{1}{3}[/mm]  +
> [mm]\bruch{1}{3}[/mm]  s
>  Mit der 1. Zeile:
>  
> 3 - 6r = 1 + 2s ergibt sich  s = 1 und somit r = 0
>  
> Nun kommt aus der 2. Zeile
>  
> c = -2
>  
> D.h. die Geraden schneiden sich wenn b = -6, a = 3 und c =
> -2
>  

Wie gesagt: bei anderen Werten für a?

>
>
> Zum 2. Fall: b [mm]\not=[/mm] -6, c = - [mm]\bruch{1}{3}[/mm]
>  
> Bereits bekannt, dass für c = -1/3 ein Schneiden nicht
> möglich ist.

Wie gesagt fehlt noch der dritte Fall.

Gruß v. Angela


Bezug
        
Bezug
Beziehung von Geraden: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Sa 17.02.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de