www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Bijektive Abbildung
Bijektive Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bijektive Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 So 26.10.2008
Autor: kuemmelsche

Aufgabe
Für welche a, b, c [mm] \in \IR [/mm] ist die Abbildung f : [mm] \IR \to \IR, [/mm] gegeben durch x [mm] \mapsto [/mm] ax² + bx + c, injektiv bzw.
surjektiv? Geben Sie im Fall, daß f bijektiv ist, die Umkehrabbildung [mm] f^{-1} [/mm] an!

Hi,

ich hab mal wieder eine kleine Frage an euch!

Für den letzten Teil habe ich eine Lösung. [mm] f^{-1}(y) [/mm] = y-c/b, für a = 0, b [mm] \not= [/mm] 0.

Für die ersten beiden Fragen hab ich auch eine Idee. Wenn ich f  von [mm] \IR^{+} \to \IR [/mm] abbilden lasse, dann ist die Fkt injektiv, von f: [mm] \IR \to \IR^{+} [/mm] ist die Fkt surjektiv. Ich weiß nur nicht, ob die Aufgabenstellung das Ändern vom D(f) und R(f) zulässt.

Weiterhin weiß ich nicht wie viele Fallunterscheidungen ich machen soll. Es gibt so ein Haufen fälle...

Was meint ihr wie die Aufgabe zu lösen ist?

Ich habe die Frage in keinem anderen Forum gestellt.

Danke im voraus!

lg Kuemmelsche


        
Bezug
Bijektive Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 So 26.10.2008
Autor: MathePower

Hallo kuemmelsche,

> Für welche a, b, c [mm]\in \IR[/mm] ist die Abbildung f : [mm]\IR \to \IR,[/mm]
> gegeben durch x [mm]\mapsto[/mm] ax² + bx + c, injektiv bzw.
>  surjektiv? Geben Sie im Fall, daß f bijektiv ist, die
> Umkehrabbildung [mm]f^{-1}[/mm] an!
>  Hi,
>  
> ich hab mal wieder eine kleine Frage an euch!
>  
> Für den letzten Teil habe ich eine Lösung. [mm]f^{-1}(y)[/mm] =
> y-c/b, für a = 0, b [mm]\not=[/mm] 0.


[mm]f^{-1}\left(y\right)=\bruch{y-c}{b}, \ b \not= 0[/mm]

Und das ist welche Funktion?


>  
> Für die ersten beiden Fragen hab ich auch eine Idee. Wenn
> ich f  von [mm]\IR^{+} \to \IR[/mm] abbilden lasse, dann ist die Fkt
> injektiv, von f: [mm]\IR \to \IR^{+}[/mm] ist die Fkt surjektiv. Ich
> weiß nur nicht, ob die Aufgabenstellung das Ändern vom D(f)
> und R(f) zulässt.


Ich denke nicht, daß die Aufgabenstellung eine Änderung des Definitions- und Wertebereiches zulässt. Eine Bemerkung, wann die Funktion bijektiv oder ob die Funktion bijektiv sein kann, kann man so beiläufig machen.


>
> Weiterhin weiß ich nicht wie viele Fallunterscheidungen ich
> machen soll. Es gibt so ein Haufen fälle...
>  
> Was meint ihr wie die Aufgabe zu lösen ist?


Mit den Fallunterscheidungen bist Du gut dabei.

Betrachte dann die Fälle

[mm]a=b=c=0[/mm]

[mm]a=b=0, \ c \not= 0[/mm]

[mm]a=0, \ b \not= 0, \ c = 0[/mm]

[mm]a=0, \ b \not= 0, \ c \not= 0[/mm]

und schließlich der Fall

[mm]a \not= 0[/mm]

Weitere Fallunterscheidungen sind meines Erachtens nicht notwendig.


>  
> Ich habe die Frage in keinem anderen Forum gestellt.
>
> Danke im voraus!
>  
> lg Kuemmelsche
>  


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de