www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Bijektive Abbildung entwickeln
Bijektive Abbildung entwickeln < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bijektive Abbildung entwickeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 So 17.09.2006
Autor: Binky

Aufgabe
Geben Sie eine bijektive Abbildung f: [mm] \IN [/mm] -> [mm] \IZ [/mm] an.
f(n)= ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo. Mir ist klar, was eine bijektive Abbildung ist und habe auch ein Ergebnis durch rumprobieren erhalten.
Kann man sich diese Ausprobiererei auch durch ein bestimmtes Verfahren erleichtern?

Ich habe z.B. [mm] f(n)=\begin{cases} -n/2, & \mbox{für } n \mbox{ gerade} \\ (n-1)/2, & \mbox{für } n \mbox{ ungerade} \end{cases} [/mm]

Schon mal vielen Dank für die Mühen.
Gruß
Alex

        
Bezug
Bijektive Abbildung entwickeln: Antwort
Status: (Antwort) fertig Status 
Datum: 07:36 Mo 18.09.2006
Autor: Palin

Hi wenn ich mich nicht ganz vertuhe, gibt es keine Bijektive Abb. von N->Z

da für jedes y aus Z genau ein x aus N geben muss.
Da aber die Menge Z "mehr" Elemente hat als N muss es mindestens ein y1 und y2 geben die auf das selbe x Abgebildet werden.
Also nicht bijektiv.

Bezug
                
Bezug
Bijektive Abbildung entwickeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 Mo 18.09.2006
Autor: Binky

Es ist bijektiv. Soweit ist es klar für mich.

[mm] \IN [/mm]  8  6  4  2 1 3 5 7 9
[mm] \IZ [/mm] -4 -3 -2 -1 0 1 2 3 4

So findet man es in den Lehrbüchern. [mm] \IN \to \IR [/mm] ist z.B. nicht bijektiv.
Meine Frage bezieht sich allerdings darauf, wie ich solch eine Abbildung entwickeln kann.
Bisher probiere ich rum. Stelle mir solch eine Abbildung s.o. als Tabelle dar und finde irgendwann eine Lösung.
Gibt es also dafür auch ein Verfahren?

Gruß

Binky

Bezug
                        
Bezug
Bijektive Abbildung entwickeln: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Mo 18.09.2006
Autor: mathiash

Hallo zusammen,

im einfachen Sinne ein Verfahren gibt es leider nicht, man muss jeweils sich die zur Diskussion stehenden Mengen anschauen und aus
ihrer Struktur heraus solch eine Abbildung konstruieren.

Jedoch gibt es natürlich Hilfsmittel. So gibt es einen Satz, der besagt, dass, wenn es zu zwei Mengen A und B Injektionen [mm] f\colon A\to [/mm] B und [mm] g\colon B\to [/mm] A gibt. dann auch eine Bijektion von A nach B existiert, und derr Beweis ist in gewissem Sinne konstruktiv.

Eine Injektion von [mm] \IN [/mm] nach [mm] \IZ [/mm] ist einfach, und dann würde es halt reichen, nur noch eine Injektion von [mm] \IZ [/mm] nach [mm] \IN [/mm] zu konstruieren, anstatt sich über eine
''ganze Bijektion'' Gedanken machen zu müssen.

Gruss,

Mathias


Bezug
                                
Bezug
Bijektive Abbildung entwickeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Mo 18.09.2006
Autor: Binky

Tja, dann belassen wir es an dieser Stelle mal dabei.
Ich versuche dann weiterhin die Zusammenhänge direkt zu erkennen.

Danke und Gruß
Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de