www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Bijektivität für N x N
Bijektivität für N x N < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bijektivität für N x N: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 So 16.10.2011
Autor: Zero-Zero

Aufgabe
Geordnete Paare der Menge [mm] \IN [/mm] x [mm] \IN. [/mm]
D.h. [mm] \IN [/mm] x [mm] \IN [/mm] ={(i,j)| i,j [mm] \in \IN} [/mm] und definieren eine Abbildung f: [mm] \In x\In \to \IN [/mm] durch f(i,j):= [mm] \bruch{1}{2}(i+j)(i+j+1)+i [/mm] für alle (i,j) [mm] \in \INx\IN. [/mm]
Zeigen Sie, dass f bijektiv ist.

Hallo,

ich weiß, dass eine Funktion bijektiv ist, wenn sie eine Umkehrfunktion hat. Leider weiß ich nicht, wie ich das beweisen soll (absolutes Neuland für mich). Reicht es für einen Beweis aus, wenn ich zeige, dass die obige Funktion eine Umkehrfunktion hat, und wenn ja, wie stelle ich das an?

Lieben Dank für eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bijektivität für N x N: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 So 16.10.2011
Autor: Harris

Hi!

Also für diese Funktion ist die Umkehrfunktion relativ schwer zu finden.
Bijektivität zeigt man normalerweise, indem man Injektivität und Surjektivität zeigt.

Vielleicht geht's mit dieser Darstellung leichter:
[mm] \sum_{i=0}^{x+y}i+y=f(x,y) [/mm]

Bezug
                
Bezug
Bijektivität für N x N: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 So 16.10.2011
Autor: Zero-Zero

Das heißt, um die Surjektivität zu zeigen, muss ich jetzt beweisen, dass jedem x mindestens ein y zugeordnet wird und für die Injektivität, dass jedem x maximal ein y zugeordnet wird? Hab ich das richtig verstanden?

Bezug
                        
Bezug
Bijektivität für N x N: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 So 16.10.2011
Autor: Al-Chwarizmi


> Das heißt, um die Surjektivität zu zeigen, muss ich jetzt
> beweisen, dass jedem x mindestens ein y zugeordnet wird und
> für die Injektivität, dass jedem x maximal ein y
> zugeordnet wird? Hab ich das richtig verstanden?


Hallo Zero-Zero,

ich sehe nicht, was genau du mit x und y meinst. Bleiben
wir doch bei den gegebenen Bezeichnungen: Die Abbildung
f ist durch die Gleichung

     $\ f(i,j):=\  [mm] \bruch{1}{2}(i+j)(i+j+1)+i [/mm] $

definiert. Zu zeigen ist:

1.) f ordnet jedem Paar [mm] (i,j)\in\IN^2 [/mm] eine bestimmte Zahl [mm] k=f(i,j)\in\IN [/mm] zu

2.) Ist eine beliebige Zahl [mm] k\in\IN [/mm] gegeben, so gibt es stets ein
    und nur ein Paar [mm] (i,j)\in\IN^2 [/mm]  mit  f(i,j)=k

LG    Al-Chw.


Bezug
                        
Bezug
Bijektivität für N x N: noch ein Tipp
Status: (Antwort) fertig Status 
Datum: 00:06 Mo 17.10.2011
Autor: Al-Chwarizmi

1.) mach dir klar, wie die Menge [mm] \IN [/mm] definiert wurde (bevor
    diese Aufgabe gestellt wurde)

2.) ich würde dir jedenfalls empfehlen, zunächst eine
    kleine Tabelle einiger Werte von f(i,j) zu erstellen.
    Daran ist gewissermaßen zu erkennen, "wie der Hase läuft"
    (in Bezug auf die Aufgabenstellung).

LG     Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de