www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Bild des Einsetzhomomorphismus
Bild des Einsetzhomomorphismus < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild des Einsetzhomomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:49 Fr 10.04.2020
Autor: inkeddude

Hallöchen, ich habe Probleme, ein Beweis zu verstehen.

Ich hoffe, mir kann da jemand helfen.



Satz:


Ist $L/K$ eine Körpererweiterung und sind [mm] $\alpha_{1}, \ldots, \alpha_{n} \in [/mm] L$ algebraisch über $K$, dann gilt [mm] $K(\alpha_{1}, \ldots, \alpha_{n}) [/mm] = [mm] K[\alpha_{1}, \ldots, \alpha_{n}]$ [/mm] und [mm] $K(\alpha_{1}, \ldots, \alpha_{n}) [/mm] / K$ endlich und damit algebraisch.



Beweis:

Wir führen den Beweis mit Induktion nach $n$, wobei der Fall $ n =1$ aus Übungsaufgabe 7 folgt.


Sei also $n > 1$. Mittels Induktion wissen wir, dass [mm] $K(\alpha_{1}, \ldots, \alpha_{n - 1}) [/mm] = [mm] K[\alpha_{1}, \ldots, \alpha_{n - 1}]$ [/mm] und dass [mm] $K(\alpha_{1}, \ldots, \alpha_{n - 1}) [/mm] / K$ endlich ist. Wie im Fall $ n = 1$ folgt dann

[mm] $K(\alpha_{1}, \ldots, \alpha_{n}) [/mm] = [mm] K(\alpha_{1}, \ldots, \alpha_{n - 1})(\alpha_{n}) [/mm] = [mm] K[\alpha_{1}, \ldots, \alpha_{n - 1}](\alpha_{n}) [/mm] = [mm] K[\alpha_{1}, \ldots, \alpha_{n}]$, [/mm]

da [mm] $\alpha_{n} [/mm] auch algebraisch über [mm] $K(\alpha_{1}, \ldots, \alpha_{n - 1})$ [/mm] ist, und [mm] $K(\alpha_{1}, \ldots, \alpha_{n}) [/mm] / [mm] K(\alpha_{1}, \ldots, \alpha_{n - 1})$ [/mm] ist endlich.


Aus Satz $4.24$ folgt dann, dass auch [mm] $K(\alpha_{1}, \ldots, \alpha_{n}) [/mm] /K$ eine endliche Körpererweiterung ist.



Satz 4.24 lautet außerdem:


Satz 4.24 (Gradformel)
___________________

Sind $K [mm] \le [/mm] L [mm] \le [/mm] M$ Körper, so gilt die Gradformel [mm] $\vert [/mm] M : K [mm] \vert [/mm] = [mm] \vert [/mm] M : L [mm] \vert \cdot \vert [/mm] L : K [mm] \vert$. [/mm]

Insbesondere, sind $M / L $ und $L/K$ endlich, so ist auch $M/K$ endlich und algebraisch.




Ich habe einerseits Fragen zum Beweis und andererseits Fragen zu den Symbolen.


1.) Was soll [mm] $K[\; \alpha_{1}, \ldots, \alpha_{n} \; [/mm] ]$ denn bedeuten ?

Ich weiß nur, was [mm] $K[\; \alpha \; [/mm] ]$ bedeutet.


[mm] $K[\; \alpha \; [/mm] ]$ ist das Bild des Einsetzhomomorphismus [mm] $\varphi_{\alpha}$. [/mm]

Aber was ist, wenn da mehrere Alphas in der eckigen Klammer stehen ?  


Was bedeutet das ?



2.)

Ich schreibe den Induktionsbeweis strukturierter auf, bevor ich meine Frage dazu stelle.



Induktionsanfang
_______________

Sei $n = 1$. Dann gilt [mm] $K(\alpha_{1}) [/mm] = [mm] K[\alpha_{1}]$ [/mm] (haben wir in einer Übungsaufgabe schon gezeigt)


Induktionsannahme
________________


Angenommen,  für [mm] $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n - 1}$ [/mm] gelte die Gleichung

[mm] $K(\alpha_{1}, \ldots, \alpha_{n - 1}) [/mm] = [mm] K[\alpha_{1}, \ldots, \alpha_{n - 1}]$ [/mm] und [mm] $K(\alpha_{1}, \ldots, \alpha_{n - 1}) [/mm] /K$ sei endlich.



Induktionsschritt
______________


Warum gilt [mm] $K(\alpha_{1}, \ldots, \alpha_{n}) [/mm] = [mm] K(\alpha_{1}, \ldots, \alpha_{n - 1})(\alpha_{n})$ [/mm] und  $ [mm] K[\alpha_{1}, \ldots, \alpha_{n - 1}](\alpha_{n}) [/mm] = [mm] K[\alpha_{1}, \ldots, \alpha_{n}]$ [/mm] ?


Dass [mm] $K(\alpha_{1}, \ldots, \alpha_{n - 1})(\alpha_{n}) [/mm] =  [mm] K[\alpha_{1}, \ldots, \alpha_{n - 1}](\alpha_{n})$ [/mm] gilt, ist klar, da nach Induktionsannahme die Gleichung [mm] $K(\alpha_{1}, \ldots, \alpha_{n - 1}) [/mm] = [mm] K[\alpha_{1}, \ldots, \alpha_{n - 1}]$ [/mm] gilt.


Und wie folgern sie daraus, dass [mm] $K(\alpha_{1}, \ldots, \alpha_{n}) [/mm] / [mm] K(\alpha_{1}, \ldots, \alpha_{n - 1})$ [/mm] endlich ist ?




Das sind meine Fragen. Freue mich auf eure Antworten :-)

mfg, Inkeddude


        
Bezug
Bild des Einsetzhomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 So 12.04.2020
Autor: hippias


> Hallöchen, ich habe Probleme, ein Beweis zu verstehen.
>  
> Ich hoffe, mir kann da jemand helfen.
>  
>
>
> Satz:
>  
>
> Ist [mm]L/K[/mm] eine Körpererweiterung und sind [mm]\alpha_{1}, \ldots, \alpha_{n} \in L[/mm]
> algebraisch über [mm]K[/mm], dann gilt [mm]K(\alpha_{1}, \ldots, \alpha_{n}) = K[\alpha_{1}, \ldots, \alpha_{n}][/mm]
> und [mm]K(\alpha_{1}, \ldots, \alpha_{n}) / K[/mm] endlich und damit
> algebraisch.
>  
>
>
> Beweis:
>  
> Wir führen den Beweis mit Induktion nach [mm]n[/mm], wobei der Fall
> [mm]n =1[/mm] aus Übungsaufgabe 7 folgt.
>  
>
> Sei also [mm]n > 1[/mm]. Mittels Induktion wissen wir, dass
> [mm]K(\alpha_{1}, \ldots, \alpha_{n - 1}) = K[\alpha_{1}, \ldots, \alpha_{n - 1}][/mm]
> und dass [mm]K(\alpha_{1}, \ldots, \alpha_{n - 1}) / K[/mm] endlich
> ist. Wie im Fall [mm]n = 1[/mm] folgt dann
>  
> [mm]K(\alpha_{1}, \ldots, \alpha_{n}) = K(\alpha_{1}, \ldots, \alpha_{n - 1})(\alpha_{n}) = K[\alpha_{1}, \ldots, \alpha_{n - 1}](\alpha_{n}) = K[\alpha_{1}, \ldots, \alpha_{n}][/mm],
>  
> da [mm]$\alpha_{n}[/mm] auch algebraisch über [mm]$K(\alpha_{1}, \ldots, \alpha_{n - 1})$[/mm]
> ist, und [mm]$K(\alpha_{1}, \ldots, \alpha_{n})[/mm] / [mm]K(\alpha_{1}, \ldots, \alpha_{n - 1})$[/mm]
> ist endlich.
>  
>
> Aus Satz [mm]4.24[/mm] folgt dann, dass auch [mm]K(\alpha_{1}, \ldots, \alpha_{n}) /K[/mm]
> eine endliche Körpererweiterung ist.
>  
>
>
> Satz 4.24 lautet außerdem:
>  
>
> Satz 4.24 (Gradformel)
>  ___________________
>  
> Sind [mm]K \le L \le M[/mm] Körper, so gilt die Gradformel [mm]\vert M : K \vert = \vert M : L \vert \cdot \vert L : K \vert[/mm].
>  
> Insbesondere, sind [mm]M / L[/mm] und [mm]L/K[/mm] endlich, so ist auch [mm]M/K[/mm]
> endlich und algebraisch.
>  
>
>
>
> Ich habe einerseits Fragen zum Beweis und andererseits
> Fragen zu den Symbolen.
>  
>
> 1.) Was soll [mm]K[\; \alpha_{1}, \ldots, \alpha_{n} \; ][/mm] denn
> bedeuten ?
>  
> Ich weiß nur, was [mm]K[\; \alpha \; ][/mm] bedeutet.
>  
>
> [mm]K[\; \alpha \; ][/mm] ist das Bild des Einsetzhomomorphismus
> [mm]\varphi_{\alpha}[/mm].

Du musst den Inhalt der Vorlesungen besser parat haben. Ich werde Dir nicht die Mühe abnehmen selber das Skript nach der entsprechenden Definition durchzuarbeiten. Aber um die Frage nicht ganz unbeachtet zu lassen dies: Du sprichst von einem Einsetzungshomomorphismus; was ist seine Definitionsmenge?
  

>  
> Aber was ist, wenn da mehrere Alphas in der eckigen Klammer
> stehen ?  
>
>
> Was bedeutet das ?
>  
>
>
> 2.)
>  
> Ich schreibe den Induktionsbeweis strukturierter auf, bevor
> ich meine Frage dazu stelle.
>  
>
>
> Induktionsanfang
>  _______________
>  
> Sei [mm]n = 1[/mm]. Dann gilt [mm]K(\alpha_{1}) = K[\alpha_{1}][/mm] (haben
> wir in einer Übungsaufgabe schon gezeigt)
>  
>
> Induktionsannahme
>  ________________
>  
>
> Angenommen,  für [mm]\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n - 1}[/mm]
> gelte die Gleichung
>
> [mm]K(\alpha_{1}, \ldots, \alpha_{n - 1}) = K[\alpha_{1}, \ldots, \alpha_{n - 1}][/mm]
> und [mm]K(\alpha_{1}, \ldots, \alpha_{n - 1}) /K[/mm] sei endlich.
>  
>
>
> Induktionsschritt
>  ______________
>  
>
> Warum gilt [mm]K(\alpha_{1}, \ldots, \alpha_{n}) = K(\alpha_{1}, \ldots, \alpha_{n - 1})(\alpha_{n})[/mm]

Dies folgt aus der Definition von [mm] $K(\alpha_{1}, \ldots, \alpha_{n})$, [/mm] die Du in Deinem Skript findest.

> und  [mm]K[\alpha_{1}, \ldots, \alpha_{n - 1}](\alpha_{n}) = K[\alpha_{1}, \ldots, \alpha_{n}][/mm]
> ?
>  
>
> Dass [mm]K(\alpha_{1}, \ldots, \alpha_{n - 1})(\alpha_{n}) = K[\alpha_{1}, \ldots, \alpha_{n - 1}](\alpha_{n})[/mm]
> gilt, ist klar, da nach Induktionsannahme die Gleichung
> [mm]K(\alpha_{1}, \ldots, \alpha_{n - 1}) = K[\alpha_{1}, \ldots, \alpha_{n - 1}][/mm]
> gilt.
>
>
> Und wie folgern sie daraus, dass [mm]K(\alpha_{1}, \ldots, \alpha_{n}) / K(\alpha_{1}, \ldots, \alpha_{n - 1})[/mm]
> endlich ist ?

Vielleicht wird der Beweis verständlicher, wenn ich $F:= [mm] K(\alpha_{1}, \ldots, \alpha_{n-1})$ [/mm] der Übersichtlichkeit halber als Abkürzung einführe.
Prüfe, ob auf $F$ und [mm] $\alpha_{n}$ [/mm] der in der Übung bewiesene Satz anwendbar ist.

>  
>
>
>
> Das sind meine Fragen. Freue mich auf eure Antworten :-)
>  
> mfg, Inkeddude
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de