www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Bild stetiger Operatoren
Bild stetiger Operatoren < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild stetiger Operatoren: Beweis,
Status: (Frage) beantwortet Status 
Datum: 16:07 So 23.01.2011
Autor: Balendilin

Aufgabe
Gegeben ist ein linearer Operator T: [mm] X\rightarrow [/mm] Y, wobei X und Y normierte Räume (mit den Normen [mm] ||\cdot||_x [/mm] bzw. [mm] ||\cdot||_Y) [/mm] über dem selben Körper sind.

zu zeigen ist, dass folgende Aussagen äquivalent sind:

(1) T ist stetig
(2) T ist beschränkt
(3) Das Bild unter T der offenen oder abgeschlossenen Einheitskugel in X ist beschränkt in Y
(4) Das Bild unter T jeder in X beschränkten Menge ist beschränkt in Y
(5) Es gibt eine Kugel um 0 in X, deren Bild in Y beschränkt ist

Einige Richtungen habe ich schon bewiesen.
1 [mm] \Leftrightarrow [/mm] 2 habe ich hin bekommen

Aus 2 folgt dann 3:
[mm] ||x||_x \leq [/mm] 1 [mm] \Rightarrow ||Tx||_y\leq c\cdot||x||_x=c [/mm] (da T beschränkt ist)

Genau so folgt auch [mm] 2\Rightarrow [/mm] 4 und [mm] 2\Rightarrow [/mm] 5

Ist folgender Beweis für [mm] 5\Rightarrow [/mm] 1 ok:
Sei U diese Kugel. T|U (T eingeschränkt auf U) ist also beschränkt. Damit ist T|U stetig auf U, insbesondere also in einem Pkt. (z.B. der 0). Und damit ist auch T in 0 stetig und damit auf ganz X
Der Beweis für [mm] 3\Rightarrow [/mm] 1 wäre analog.

Bekommt man irgendwie einen Beweis für [mm] 5\Rightarrow [/mm] 4 oder 3 [mm] \Rightarrow [/mm] 4 hin?

        
Bezug
Bild stetiger Operatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 07:29 Mo 24.01.2011
Autor: fred97


> Gegeben ist ein linearer Operator T: [mm]X\rightarrow[/mm] Y, wobei
> X und Y normierte Räume (mit den Normen [mm]||\cdot||_x[/mm] bzw.
> [mm]||\cdot||_Y)[/mm] über dem selben Körper sind.
>  
> zu zeigen ist, dass folgende Aussagen äquivalent sind:
>  
> (1) T ist stetig
>  (2) T ist beschränkt
>  (3) Das Bild unter T der offenen oder abgeschlossenen
> Einheitskugel in X ist beschränkt in Y
>  (4) Das Bild unter T jeder in X beschränkten Menge ist
> beschränkt in Y
>  (5) Es gibt eine Kugel um 0 in X, deren Bild in Y
> beschränkt ist
>  Einige Richtungen habe ich schon bewiesen.
> 1 [mm]\Leftrightarrow[/mm] 2 habe ich hin bekommen
>  
> Aus 2 folgt dann 3:
>  [mm]||x||_x \leq[/mm] 1 [mm]\Rightarrow ||Tx||_y\leq c\cdot||x||_x=c[/mm]
> (da T beschränkt ist)
>  
> Genau so folgt auch [mm]2\Rightarrow[/mm] 4 und [mm]2\Rightarrow[/mm] 5
>  
> Ist folgender Beweis für [mm]5\Rightarrow[/mm] 1 ok:
>  Sei U diese Kugel. T|U (T eingeschränkt auf U) ist also
> beschränkt.


Das hast Du falsch verstanden.  Es bedeutet:  T(U) ist beschränkt, d.h. : es gibt ein c>0 mit:

                      $||Tx|| [mm] \le [/mm] c$   für jedes x [mm] \in [/mm] U


FRED

> Damit ist T|U stetig auf U, insbesondere also
> in einem Pkt. (z.B. der 0). Und damit ist auch T in 0
> stetig und damit auf ganz X
>  Der Beweis für [mm]3\Rightarrow[/mm] 1 wäre analog.
>  
> Bekommt man irgendwie einen Beweis für [mm]5\Rightarrow[/mm] 4 oder
> 3 [mm]\Rightarrow[/mm] 4 hin?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de