www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Bilineare Abbildungen
Bilineare Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilineare Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 Sa 24.06.2006
Autor: Geddie

Aufgabe
Für B:= [mm] \pmat{ 1 & 1 & 0 \\ 2 & 0 & 2 \\ 3 & 1 & 2 }\in \IR^{3x3} [/mm]
sei b: [mm] \IR^{3}x\IR^{3} \to \IR [/mm] definiert durch b(x,y) := [mm] x^{T}By. [/mm] Man bestimme {x|b(x,y) = 0 [mm] \forall [/mm] y [mm] \in \IR^{3}}und [/mm] {y|b(x,y) = 0 [mm] \forall [/mm] x [mm] \in \IR^{3} [/mm] }.

N'Abend allerseits. Hoffe ihr guckt alle fleißig Fussball, aber könnt trotzdem noch ein Blick ins Forum werfen :-)

Hab bei dieser Aufgabe eigentlich das Ergebnis bzw. den Weg schon hergeleitet, aber bin mir überhaupt nicht sicher, ob man das so einfach machen kann.

Also man kann ja [mm] x^{T}By [/mm] ja umschreiben zu  [mm] \summe_{i,j} x_{i}b_{ij}y_{j}. [/mm]

Die Matrix B habe ich ja gegeben. Jetzt habe ich einfach mal ganz stupide diese Summe ausgerechnet. Dann kommt ja eine Zahl bzw. ein Term raus mit allen Variablen: [mm] y_{1}x_{1} [/mm] + [mm] 2x_{2}y_{1} [/mm] + [mm] 3x_{3}y_{1} [/mm] + [mm] x_{1}y_{2} [/mm] + [mm] x_{3}y_{2} [/mm] + [mm] 2x_{2}y_{3} [/mm] + [mm] 2x_{3}y_{3} [/mm]

Diesen Term habe ich jetzt so umgeformt, dass ich die [mm] x_{i} [/mm] ausgeklammert habe und somit in den Klammer nur noch die y-Variablen stehen.  Dieser Term wird ja genau dann 0, wenn die Terme in den Klammern 0 werden. Somit habe ich doch dann die Bedingung für {y|b(x,y) = 0 [mm] \forall [/mm] x [mm] \in \IR^{3} [/mm] }erfüllt oder? Jetzt mache ich das Gleiche nochmal nur, dass ich jetzt die [mm] y_{i} [/mm] ausklammer und somit die x-Variablen in den Klammern stehen. Dann habe ich doch die andere Bedingung auch erfüllt. Die Ergebnisse, wann die einzelnen Teile 0 werden einfach noch richtig in Vektorschreibweise hinschreiben und fertig ist die Aufgabe oder?

Über jeden Kommentar wäre ich wie immer dankbar.

Schönen Abend noch

P.S. Deutschland wird Weltmeister :-)

        
Bezug
Bilineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Mo 26.06.2006
Autor: banachella

Hallo!

Dein Ansatz ist in der Tat nicht schlecht. Auf die Art findest du Lösungen $x$ und $y$. Was du allerdings zu zeigen hast ist, dass das auch alle Lösungen sind, die du da gefunden hast!
Dafür ist es vielleicht leichter, folgenden Trick zu benutzen:

$b(x,y)=0\ [mm] \forall\, x\in\IR^3\ \Leftrightarrow\ [/mm] x^TBy=0\ [mm] \forall\, x\in\IR^3\ \Leftrightarrow\ \langle x;By\rangle\ \forall\, x\in\IR^3\ \Leftrightarrow\ [/mm] By=0\ [mm] \Leftrightarrow\ y\in\mathrm{Kern}(B)$. [/mm]
Jetzt musst du nur noch den Kern deiner Matrix bestimmen.

Kannst du es auch genauso für die andere Menge machen?

Gruß, banachella

Bezug
                
Bezug
Bilineare Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:00 Mo 26.06.2006
Autor: Geddie

Hm. Danke dir erstmal für den Tipp. Das leuchtet mir ein deine Vorgehensweise.
Auf den ersten Blick würde ich sagen, dass man das für die andere Menge genauso machen kann. Evlt. mit kleinen Abänderungen. Aber prinzipiell sollte es genauso funktionieren können. Werd mich aber da erst nochmal dransetzen und mal schauen obs genauso funzt.

DANKE DIR!!!

LG

GErd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de