Bilinearform < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:11 Fr 20.04.2012 | Autor: | yangwar1 |
Aufgabe | Sei V ein n-dimensionaler [mm] \IR [/mm] Vektorraum mit einer Bilinearform [mm] \Phi. [/mm]
a) Zeigen Sie, dass für jedes F [mm] \in End_{\IR}(V) [/mm] durch [mm] \Phi_F:V \times [/mm] V [mm] \to \IR, [/mm] (x,y) [mm] \mapsto \Phi(F(x),y) [/mm] ebenfalls eine Bilinearform auf V definiert ist. |
Ich verstehe die Aufgabenstellung glaube ich nicht richtig. Gegeben ist also eine Bilinearform [mm] \Phi, [/mm] welche die Eigenschaften der Bilinearität erfüllt.
1. [mm] \Phi(v_1+v_2,w)=\Phi(v_1,w)+\Phi(v_2,w) [/mm] mit [mm] v_1,v_2,w \in [/mm] V.
2. ...
3. ...
4. ...
Um die Bilinearität der definierten Abbildung nachzuweisen, müsste ich doch dann (x+y,z) abbilden. Das wäre:
[mm] \Phi_F(x+y,z)=\Phi(F(x+y),z)=\Phi(F(x)+F(y),z)=\Phi(F(x),z)+\Phi(F(y),z)=\Phi_F(x,z)+\Phi(y,z) [/mm] mit x,y,z [mm] \in [/mm] V.
Das gleiche dann noch für die anderen drei "Regeln". Wäre ich dann fertig bzw. ist das richtig?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:19 Fr 20.04.2012 | Autor: | tobit09 |
Hallo yangwar,
> Ich verstehe die Aufgabenstellung glaube ich nicht richtig.
Ich glaube doch.
> Gegeben ist also eine Bilinearform [mm]\Phi,[/mm] welche die
> Eigenschaften der Bilinearität erfüllt.
> 1. [mm]\Phi(v_1+v_2,w)=\Phi(v_1,w)+\Phi(v_2,w)[/mm] mit [mm]v_1,v_2,w \in[/mm]
> V.
> 2. ...
> 3. ...
> 4. ...
>
> Um die Bilinearität der definierten Abbildung
> nachzuweisen, müsste ich doch dann (x+y,z) abbilden. Das
> wäre:
>
> [mm]\Phi_F(x+y,z)=\Phi(F(x+y),z)=\Phi(F(x)+F(y),z)=\Phi(F(x),z)+\Phi(F(y),z)=\Phi_F(x,z)+\Phi_\red{F}(y,z)[/mm]
> mit x,y,z [mm]\in[/mm] V.
> Das gleiche dann noch für die anderen drei "Regeln".
> Wäre ich dann fertig bzw. ist das richtig?
Ja.
Viele Grüße
Tobias
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:48 Mo 23.04.2012 | Autor: | Fincayra |
Hallo
Der zweite Punkt ausgeschrieben wäre dann
$ [mm] \Phi_F [/mm] (kx, y) = [mm] \Phi [/mm] (F(kx), y) = [mm] \Phi [/mm] (k*F(x), y) = k * [mm] \Phi [/mm] (F(x), y) = k * [mm] \Phi_F [/mm] (x, y) [mm] \forall [/mm] x, y [mm] \in [/mm] V, k [mm] \in \IR [/mm] $
So richtig geschrieben?
LG
Fin
|
|
|
|
|
Hallo Fincayra,
> Hallo
>
> Der zweite Punkt ausgeschrieben wäre dann
>
> [mm]\Phi_F (kx, y) = \Phi (F(kx), y) = \Phi (k*F(x), y) = k * \Phi (F(x), y) = k * \Phi_F (x, y) \forall x, y \in V, k \in \IR[/mm]
[mm] $=...=\Phi_F(x,ky)$ [/mm]
>
> So richtig geschrieben?
Ganz recht, du führst "einfach" alles auf [mm] $\Phi$ [/mm] zurück, von dem du ja weißt, dass es eine BLF ist und dass dafür dann alle Eigenschaften einer BLF gelten ...
>
> LG
> Fin
|
|
|
|