www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Binomialverteilung
Binomialverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung: Unnötige Angabe 2% ?
Status: (Frage) beantwortet Status 
Datum: 20:02 Fr 20.03.2015
Autor: spikemike

Aufgabe
9.025.) Bei der Produktion von Kippschalten soll der Ausschuss um 2% gehalten werden. Dazu kontrolliert man die Erzeugung täglich, indem man eine Stichprobe von 8 Stück untersucht. Sind dabei nicht alle acht Schalter einwandfrei, so stoppt man die Produktion, um die Fehler zu beheben.
Wie groß ist die WSK das die Erzeugung nicht gestoppt wird, obwohl der tatsächliche Ausschuss 5% beträgt?

9.025.) Bei der Produktion von Kippschalten soll der Ausschuss um 2% gehalten werden. Dazu kontrolliert man die Erzeugung täglich, indem man eine Stichprobe von 8 Stück untersucht. Sind dabei nicht alle acht Schalter einwandfrei, so stoppt man die Produktion, um die Fehler zu beheben.
Wie groß ist die WSK das die Erzeugung nicht gestoppt wird, obwohl der tatsächliche Ausschuss 5% beträgt?

B,n,p wobei n=8, p=0,05....WSK für einen defekten Schalter
und ...- die Anzahl der Treffer (einen defekten Schalter zu erwischen)=0 [weil die Produktion ja nicht gestoppt werden soll und dies bereits bei einem defekten Schalter geschehen würde).

R: [mm] \vektor{8 \\ 0}*0,05^0*0,95^8=1*1*0,95^8 \approx [/mm] 0,6634 [mm] \hat= [/mm] 66,34%

Die Angabe 2%...Wie groß ist die WSK, dass die Produktion gestoppt wird, obwohl die Ausschussquote lediglich 2% beträgt?

Frage: Muss ich nun mit p=0,02 und n=8 die Binomialverteilung durchführen?

Vielen Dank für eure Antworten, mfg spikemike.

        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 Sa 21.03.2015
Autor: M.Rex

Hallo

Hier brauchst du doch nur die Wahrscheinlichkeit, dass in der Stichprobe von n=8 mindestens ein defektes Teil auftritt, wobei p=0,05 ist.

Das geht am besten über das Gegenereignis, also [mm] 1-P(X=0)=1-0,95^{8}\approx0,3365 [/mm]
Das ginge hier sogar ohne die Binomialverteilung, da das Gegenereignis nur aus einem Pfad besteht.

Die Angabe der 2% sind in der Tat hier nicht relevant.

Marius
 

Bezug
                
Bezug
Binomialverteilung: Danke für die Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 So 22.03.2015
Autor: spikemike

Ich probiere jetzt einmal deiner Antwort nachzukommen:

Also hier habe ich für k=0 (kein Teil ist defekt) und das p=0,05 aus der Angabe genommen:

R: $ [mm] \vektor{8 \\ 0}\cdot{}0,05^0\cdot{}0,95^8=1\cdot{}1\cdot{}0,95^8 \approx [/mm] $ 0,6634 $ [mm] \hat= [/mm] $ 66,34%

AUSSCHUSS WSK: 5% [mm] \hat= [/mm] 0,05 für mein p.......Wahrscheinlichkeit
EINWANDFREI WSK: 1-0,05=0,95% Erfolgs WSK
-------------------------------------------------------------------
Ich möchte wissen wie groß die WSK ist, damit die Produktion gestoppt wird:
Fazit: Sie wird im Fall gestoppt, dass 1 Teil mit der AUSSCHUSS WSK von 0,05 auftritt (o.k_daher [mm] 1-0,05).....\hat=0,95. [/mm] Und 1-0,95 bedeutet, dass alle defekt sind und der Fall X=EINWANDFREUES Teil mit X=0 nicht eintritt?!
Dann wird das ganze noch hoch acht genommen weil er 8 mal zieht und dabei immer einen Erfolg mit der Wahrscheinlichkeit 0,95 hat.
Nun habe ich den Raum OMEGA mit 1 und die [mm] 0,95^8 [/mm] davon abgezogen muss natürlich etwas ergeben und das ist der Misserfolg.

R: $ [mm] 1-P(X=0)=1-0,95^{8}\approx0,3365 [/mm] $

Ich denke ich habe es verstanden, danke mfg spikemike.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de