Binomialverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:00 Mi 04.07.2007 | Autor: | Sebastor |
Aufgabe | Wir untersuchen die (Versicherungs-)Schadenverteilung. Wie groß ist die Wkt, dass 0, 1, 2, 3,... 1000 Schäden auftreten?
N: Anzahl der Schäden in einem Jahr (Zufallsvariable)
P(N<=k): Wkt, dass k oder weniger Schäden auftreten
P(N>k): Wkt, dass mehr als k Schäden auftreten
p=0,0025 q=0,9975 n=1000
Die in der folgenden Tabelle abgebildeten Daten kann ich nicht nachvollziehen:
Anzahl Schäden (n) Wkt N=n Wkt N<=n Wkt N>n
1 20,51% 28,69% 71,31%
2 25,67% 54,37% 45,63%
10 0,08% 99,97% 0,03%
|
Wie kommt mein Professor auf diese Werte? Wenn n=1000 ist, muss ich dann nicht 1000! ausrechnen?
Vielen Dank für Eure schnelle Hilfe!! Sebastian
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Dateianhänge: Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:44 Mi 04.07.2007 | Autor: | luis52 |
Moin Sebastor,
zunaechst einmal ein herzliches
Wie dein Professor das berechnet hat, weiss ich natuerlich nicht. Aber es gibt frei verfuegbare Software, die das kann. Ich habe die Werte mal mit R ueberprueft (die letzte Spalte ist klar):
1: |
| 2: | > dbinom(1,1000,.0025)
| 3: | [1] 0.2050839
| 4: | > pbinom(1,1000,.0025)
| 5: | [1] 0.2869123
| 6: | > dbinom(2,1000,.0025)
| 7: | [1] 0.2567403
| 8: | > pbinom(2,1000,.0025)
| 9: | [1] 0.5436526
| 10: | > dbinom(10,1000,.0025)
| 11: | [1] 0.0002107691
| 12: | > pbinom(10,1000,.0025)
| 13: | [1] 0.9999404
|
Anscheinend hatte dein Prof Schwierigkeiten mit dem Fall $n=10$...
lg
Luis
|
|
|
|