www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Binomische Formeln
Binomische Formeln < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomische Formeln: Binom
Status: (Frage) beantwortet Status 
Datum: 20:57 Di 29.11.2011
Autor: schweizermatheproblem

Aufgabe
Warum wird
x2 = (a x [mm] sin\alpha)2 [/mm]  +   (b-a x [mm] cos\alpha [/mm] )2
zu
x2 = a2 x sin2 a + b2 - 2ab - [mm] cos\alpha [/mm] + a2 x [mm] cos\alpha [/mm]

In unseren Lösungen zum lösen einer Aufgabe steht das?
Es geht mit Binomischen Formeln - so viel weiss ich - aber die kenne ich nicht und ich verstehe nicht, wie das funktioniert.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binomische Formeln: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Di 29.11.2011
Autor: Blech

ich geh mal wild davon aus, daß manchmal $x2$ eigentlich [mm] $x^2$ [/mm] sein soll, manchmal ein $2x$ und manchmal ist das x ein Malzeichen.

Wenn Du das ganze jetzt noch so schreiben würdest, daß man es tatsächlich lesen könnte, dann wäre es viel leichter zu beantworten.

> Es geht mit Binomischen Formeln - so viel weiss ich - aber die kenne ich nicht und ich verstehe nicht, wie das funktioniert.

[mm] $(x+y)^2=x^2+2xy+y^2$ [/mm]
[mm] $(x-y)^2=x^2-2xy+y^2$ [/mm]
[mm] $(x+y)(x-y)=x^2-y^2$ [/mm]


Auf die kommt man leicht, indem man unter Verwendung des MBDistributivgesetzes vollständig ausmultipliziert:

[mm] $(x+y)^2=(x+y)*(x+y)=x*(x+y)+y*(x+y)=x*x+x*y+y*x+y*y$ [/mm]



Wie sich das auf Deine Frage bezieht, kann ich Dir sagen, sobald Du die sauberer geschrieben hast.


ciao
Stefan

Bezug
                
Bezug
Binomische Formeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Di 29.11.2011
Autor: schweizermatheproblem

Aufgabe
X2 = (a x sinα)2 + (b-a x cosα)2

Wird zu

X2 = a2 x sin2α + b 2 – 2ab x cosα + a2 x cos2α



Vielen Dank für Ihre Hilfe.
x bedeutet immer mal.
Das 2 meint immer hoch 2, ausser vor dem ab also das heisst 2 mal ab, aber sonst immer hoch 2.

Bezug
                        
Bezug
Binomische Formeln: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Di 29.11.2011
Autor: Blech


> x bedeutet immer mal.

Wieso verwendest Du dann nicht * wie ein normaler Mensch? Wenn Du [mm] $\times$ [/mm] auf Deiner Tastatur drückst, kommt auch nix anderes raus. =)


> Das 2 meint immer hoch 2, ausser vor dem ab also das heisst 2 mal ab, aber sonst immer hoch 2.

Formeleditor. Ist direkt unter dem Eingabefenster.



$(a * [mm] \sin\alpha)^2=a [/mm] * [mm] \sin\alpha\, [/mm] *a * [mm] \sin\alpha [/mm] = [mm] a*a*\sin\alpha*\sin\alpha=a^2*\sin^2\alpha$ [/mm]


$(b-a * [mm] \cos\alpha)^2 [/mm] = [mm] (\underbrace{b}_{=: m} [/mm] - [mm] \underbrace{a*\cos\alpha}_{=:n})^2 [/mm] = [mm] (m-n)^2=m^2-2*m*n+n^2=b^2 [/mm] - [mm] 2*\underbrace{b}_{=m}*\underbrace{(a*\cos\alpha)}_{=n} [/mm] + [mm] (a*\cos\alpha)^2$ [/mm]


ciao
Stefan

Bezug
                                
Bezug
Binomische Formeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Di 29.11.2011
Autor: schweizermatheproblem

Aufgabe
[mm] m^2-2\cdot{}m\cdot{}n+n^2=b^2 [/mm] - [mm] 2\cdot{}\underbrace{b}_{=m}\cdot{}\underbrace{(a\cdot{}\cos\alpha)}_{=n} [/mm] + [mm] (a\cdot{}\cos\alpha)^2 [/mm]

Vielen Dank für die Hilfe! Wirklich, ich habe es schon viel besser verstanden.

Die Gleichung die ich nochmal in die Aufgabenstellung geschrieben habe, ist doch was heraus kommt nach dem zweiten Binom und dann verstehe ich aber nicht mehr den schluss (warum es dann (a*cosa) + (a*cosa) gibt und nicht - a * cosa + cos2a ?


Bezug
                                        
Bezug
Binomische Formeln: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Di 29.11.2011
Autor: Blech


> Die Gleichung die ich nochmal in die Aufgabenstellung geschrieben habe, ist doch was heraus kommt nach dem zweiten Binom und dann verstehe ich aber nicht mehr den schluss

Ich versteh den Satz überhaupt nicht.


> (warum es dann (a*cosa) + (a*cosa) gibt und nicht - a * cosa + cos2a

Wo steht [mm] $a*\cos\alpha [/mm] + [mm] a*\cos\alpha$? [/mm]

ciao
Stefan

Bezug
                                                
Bezug
Binomische Formeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 Di 29.11.2011
Autor: schweizermatheproblem

Aufgabe
[mm] x^2 [/mm] = [mm] a^2\cdot{}\sin^2\alpha [/mm] + [mm] b^2 [/mm] - [mm] 2\cdot{}{b}_\cdot{}{(a\cdot{}\cos\alpha)}_ [/mm] + [mm] (a\cdot{}\cos\alpha)^2 [/mm]
warum ist diese gleichung die selbe wie [mm] x^2 [/mm] = [mm] a^2 [/mm] * [mm] (sin^2\alpha [/mm] + [mm] cos^2]\alpha) [/mm] + [mm] b^2 [/mm] - 2ab * [mm] cos\alpha [/mm]


Ich habe es jetzt zwar verstanden, warum die erste Gleichung = zweite Gleichung ist. (danke für die Hilfe, Blech!)

Jetzt wird aber die soeben herausgefundene Gleichung wieder umformuliert.
Wie geht das von statten?
Vielen Dank für Hilfe.



Bezug
                                                        
Bezug
Binomische Formeln: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Di 29.11.2011
Autor: Blech

Hi,

> $ [mm] x^2 [/mm] $ = $ [mm] a^2\cdot{}\sin^2\alpha [/mm] $ + $ [mm] b^2 [/mm] $ - $ [mm] 2\cdot{}{b}_\cdot{}{(a\cdot{}\cos\alpha)}_ [/mm] $ + $ [mm] (a\cdot{}\cos\alpha)^2 [/mm] $
> warum ist diese gleichung die selbe wie
> $ [mm] x^2 [/mm] $ = $ [mm] a^2 [/mm] $ * $ [mm] (sin^2\alpha [/mm] $ + $ [mm] cos^2]\alpha) [/mm] $ + $ [mm] b^2 [/mm] $ - 2ab * $ [mm] cos\alpha [/mm] $

Das ist viel, viel schöner. Danke.



1. [mm] $(a\cdot{}\cos\alpha)^2 =a^2\cos^2\alpha$ [/mm]

Das hatten wir oben schon mit dem Sinus statt dem Kosinus.


2. Also gilt
$ [mm] a^2\cdot{}\sin^2\alpha +(a\cdot{}\cos\alpha)^2 [/mm] =$

$= [mm] \underbrace{a^2}_{=: k}\cdot{}\underbrace{\sin^2\alpha}_{=:m} [/mm] + [mm] a^2\cdot{}\underbrace{\cos^2\alpha}_{=:n}=$ [/mm]

$=k*m + k*n = k*(m+n) = [mm] a^2*(\sin^2\alpha +\cos\alpha) [/mm]  $


ciao
Stefan

Bezug
                                
Bezug
Binomische Formeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:06 Di 29.11.2011
Autor: schweizermatheproblem

Ich habe es jetzt verstanden! Vielen, vielen herzlichen Dank!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de