www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Blasius-Theorem
Blasius-Theorem < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Blasius-Theorem: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:22 Di 29.05.2012
Autor: diemelli1

Aufgabe
Ein Zylinder mit Radius R dreht sich mit der Winkelgeschwindigkeit [mm] \omega. [/mm] Wird er mit der Geschwindigkiet U von links angeströmt, kann das Strömungsfeld durch die komplexe Funktion [mm] f(z)=\bruch{1}{2}(z+\bruch{1}{2}) [/mm] +iKLnz  beschrieben werden. Dabei ist der dimensionslose Faktor [mm] K=\bruch{R\omega}{2U} [/mm] ein Maß dafür, wie stark der Wirbel um den Zylinder ausgebildet ist. Die Formel für die dimensionslose Auftriebkraft ist nach Blasius für eine geschlossene Kontur T um den Zylinder mit positiver Umlaufzahl
[mm] F_{x}-iF_{y}= \bruch{i}{2} \integral_{T}^{}{dz} (\bruch{df}{dz})^2 [/mm]

i) Verifiziere, dass der rotierende Zylinder in der obigen Potentialströmung f(z) keine horizontale Kraft [mm] F_{x} [/mm] erfährt.

ii) Bestätige die Auftriebskraft [mm] F_{y}= \pi [/mm] K in y-Richtung.

iii) Die physikalische Kraft pro 1m Zylinder ergibt sich durch die Multiplikation mit dem Faktort [mm] 4pRU^2. [/mm] Welche Kraft wirkt auf den Zylinder (R=2m, [mm] \omega=7/s, [/mm] Höhe H=27m), wenn er von Luft der Dichte [mm] p=1,2kg/m^3 [/mm] mit U=5m/s angeströmt wird?

Hallo zusammen,

ich muss die Aufgaben bis morgen fertig haben und habe absolut keine Idee was und vorallem wie das Rechnen soll. Ich hoffe das mir Jemand einen Tipp geben kann, bzw. mir auf die Sprünge helfen kann.

Grüße


        
Bezug
Blasius-Theorem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Do 31.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Blasius-Theorem: Idee
Status: (Frage) überfällig Status 
Datum: 22:12 Sa 07.09.2013
Autor: jean.s

Aufgabe 1
Zitat von "diemelli1"
> Ein Zylinder mit Radius R dreht sich mit der
> Winkelgeschwindigkeit [mm]\omega.[/mm] Wird er mit der
> Geschwindigkiet U von links angeströmt, kann das
> Strömungsfeld durch die komplexe Funktion
> [mm]f(z)=\bruch{1}{2}(z+\bruch{1}{2})[/mm] +iKLnz  beschrieben
> werden. Dabei ist der dimensionslose Faktor
> [mm]K=\bruch{R\omega}{2U}[/mm] ein Maß dafür, wie stark der Wirbel
> um den Zylinder ausgebildet ist. Die Formel für die
> dimensionslose Auftriebkraft ist nach Blasius für eine
> geschlossene Kontur T um den Zylinder mit positiver
> Umlaufzahl
>  [mm]F_{x}-iF_{y}= \bruch{i}{2} \integral_{T}^{}{dz} (\bruch{df}{dz})^2[/mm]
>  
> i) Verifiziere, dass der rotierende Zylinder in der obigen
> Potentialströmung f(z) keine horizontale Kraft [mm]F_{x}[/mm]
> erfährt.


Aufgabe 2
> ii) Bestätige die Auftriebskraft [mm]F_{y}= \pi[/mm] K in
> y-Richtung.


Aufgabe 3
> iii) Die physikalische Kraft pro 1m Zylinder ergibt sich
> durch die Multiplikation mit dem Faktort [mm]4pRU^2.[/mm] Welche
> Kraft wirkt auf den Zylinder (R=2m, [mm]\omega=7/s,[/mm] Höhe
> H=27m), wenn er von Luft der Dichte [mm]p=1,2kg/m^3[/mm] mit U=5m/s
> angeströmt wird?


Moinmoin,

Ich stehe nun vor dem selben Problem wie diemelli1, ich bin ratlos, wie diese Aufgabe zu lösen ist.
gibt es jemanden, der eine Idee hat? :)
(Hauptthema ist im Moment die Laurent-Reihen und der Residuensatz)

Meine Idee bisher, jedoch bin ich davon nicht sonderlich überzeugt:

Man nimmt sich zu erst f(z), setzt dort anstelle des K die Formel
[mm]K=\bruch{R\omega}{2U}[/mm]

ein.

Danach stellt man [mm]F_{x}-iF_{y}= \bruch{i}{2} \integral_{T}^{}{dz} (\bruch{df}{dz})^2[/mm]
nach [mm]F_{x}[/mm] um.

nun setzt man [mm] f(z) [/mm] in die Umgestellte Formel ein.

Nun integriert man.

Könnte das so richtig sein, oder ist das völlig falsch? :)

Viele Grüße






Bezug
                
Bezug
Blasius-Theorem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Di 08.10.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de