www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Blech -> Würfel
Blech -> Würfel < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Blech -> Würfel: Aufgabe 6
Status: (Frage) beantwortet Status 
Datum: 13:56 Sa 25.02.2012
Autor: Loc-Nar

Aufgabe
Aus einem quadratischen Blech (Kantenlänge 60cm) soll ein oben offener, quaderförmiger Behälter mit dem groß möglichsten Volumen hergestellt werden.
a.) Erstellen Sie eine Skizze
b.) Welche Abmessungen müssen für den Behälter gewählt werden?
c.) Wie groß ist das Volumen , mit den zuvor gewählten Abmessungen?

Moin,

folgende Ideen zu der Aufgabe. Gegeben Kantenlänge 60x60. Das dann einfach durch [mm] \bruch{1}{3}. [/mm] Sodass der Behälter eine Kantenlänge von 20cm hat. Kann ich mir das echt so einfach machen?!

Lg

        
Bezug
Blech -> Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Sa 25.02.2012
Autor: mmhkt

Guten Tag,
nein, so einfach geht das leider nicht...

Eine Kantenlänge des Behälters LxBxH 20cm ergibt einen Rauminhalt von...

Wenn Du eine Skizze anfertigst, siehst Du, dass an den Ecken des Bleches vier Stücke Abfall von jeweils 20x20cm  entstehen.
Die lassen sich doch bestimmt noch - wenigstens anteilig - für den Inhalt verwerten.

Spiel mal ein par Maße in Gedanken oder mit Papier (egal ob gezeichnet oder einem Modell) durch.

Wie sieht es aus bei einer Grundfläche von:
30x30cm Höhe 15cm = Volumen?
40x40cm Höhe 10cm = Volumen?
50x50cm Höhe  5cm = Volumen?

Schönen Gruß
mmhkt

Bezug
                
Bezug
Blech -> Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Sa 25.02.2012
Autor: Loc-Nar

Ok Denkfehler, schon wieder, also die Kantenlängen von 40x40x10 ergeben bei mir das größte Volumen. Ist es aber auch? Müsste man hier jetzt nicht Näherungsweise Vorgehen um das größte mögliche Maximum zu bestimmt? Und wie kann man seine Lösungsfindung am besten mathematisch ausdrücken?

Bezug
                        
Bezug
Blech -> Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Sa 25.02.2012
Autor: leduart

Hallo
wie bist du auf dein (richtiges ergebnis gekommen?
üblich schreibe die möglichen volumen in abhängigkeit von x auf, wobei x die Länge des Abfallstückes ist.
dann hast du V(x), wie man das max einer funktion bestimmt weisst du?
Gruss leduart

Bezug
                                
Bezug
Blech -> Würfel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:02 Sa 25.02.2012
Autor: Loc-Nar

Ok also das max einer Funktion bestimme ich ja mit f'(x)=0. Bei meiner Vorgehensweise bin ich einfach von der Logik meiner Skizze ausgegangen. Dann muss ich mir jetzt eine Funktion basteln? Keine Sorge ich hab keine Ahnung wie das geht :/

So hab jetzt folgendes versucht: Da V=a*b*h ist habe ich jetzt folgendes aufgestellt. V(x)=(60-2x)*(60-2x)*x ist das soweit richtig?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de