www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Blockmatrizen
Blockmatrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Blockmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:12 Fr 04.11.2011
Autor: Zukku

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Man zeige, dass die Eigenwerte einer Block-Diagonalmatrix A mit Blöcken A_{k} (K01,...,n) genau die Eigenwerte der einzelnen Blöcke sind. Weiters zeige man, dass alle Eigenvektoren von A aus den Eigenvektoren der Blöcke A_{k} gebildet werden können. (Hinweis: Zum Eigenwert \lambda: Aneinanderreihen von entweder Eigenvektoren der einzelnen Blöcke mit Eigenwert \lambda, oder Nullblöcken für jene Blöcke für die \lambda kein Eigenwert ist). Man schließe daraus Sp(A)=\sum\limits_{k=1}^{n}{Sp(A_{k}} und det(A)=\prod\limits_{k=1}^{n}{det(A_{k})

Nun meine Frage: Ich hätte die beiden ersten Punkte (Eigenwerte und Eigenvektoren) zeigen können, nur mein Problem ist, dass ich für die Eigenwerte die Determinante der Blockmatrizen gebraucht hätte.
Wie ich das ohne Determinante zeigen kann, weiß ich leider nicht.
Kann mir irgendjemand bitte helfen?

Lg

        
Bezug
Blockmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:33 Fr 04.11.2011
Autor: donquijote

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>  
> Man zeige, dass die Eigenwerte einer Block-Diagonalmatrix A
> mit Blöcken A_{k} (K01,...,n) genau die Eigenwerte der
> einzelnen Blöcke sind. Weiters zeige man, dass alle
> Eigenvektoren von A aus den Eigenvektoren der Blöcke A_{k}
> gebildet werden können. (Hinweis: Zum Eigenwert \lambda:
> Aneinanderreihen von entweder Eigenvektoren der einzelnen
> Blöcke mit Eigenwert \lambda, oder Nullblöcken für jene
> Blöcke für die \lambda kein Eigenwert ist). Man schließe
> daraus Sp(A)=\sum\limits_{k=1}^{n}{Sp(A_{k}} und
> det(A)=\prod\limits_{k=1}^{n}{det(A_{k})
>  Nun meine Frage: Ich hätte die beiden ersten Punkte
> (Eigenwerte und Eigenvektoren) zeigen können, nur mein
> Problem ist, dass ich für die Eigenwerte die Determinante
> der Blockmatrizen gebraucht hätte.
>  Wie ich das ohne Determinante zeigen kann, weiß ich
> leider nicht.
>  Kann mir irgendjemand bitte helfen?
>  
> Lg

Du kannst doch direkt mit der Defintion von Eigenwerten und Eigenvektoren arbeiten:
Wenn du zeigst, dass Ax=\lambda x äquivalent ist zu A_kx_x=\lambda x_k für alle k,
folgt daraus sofort, dass jeder Eigenwert von A Eigenwert von (mindestens) einem der Blöcke sein muss und umgekehrt.
Dazu braucht es kein charakteristisches Polynom.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de