www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Blockplan
Blockplan < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Blockplan: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:30 Sa 13.06.2015
Autor: Salamence

Aufgabe
Ein $ a-(n,k,r)- $ Blockplan ist eine n-elementige Menge [mm] \Omega [/mm] zusammen mit einer Menge [mm] \mathcal{B} [/mm] von k-elementigen Teilmengen, sodass für alle $ I [mm] \subset \Omega [/mm] $ mit $ | I | = a $

$ # [mm] \{ B \in \mathcal{B} | I \subset B \} [/mm] = a $

Eine Matrix $ J [mm] \in \{ 0, 1 \}^{ m \times \Omega} [/mm] $ heißt Inzidenzmatrix zu dem Blockplan $ ( [mm] \Omega, \mathcal{B} [/mm] ) $, wenn $ m = | [mm] \mathcal{B} [/mm] | $ und die Blöcke $ B [mm] \in \mathcal{B} [/mm] $ den Zeilen entsprechen, das heißt, die Blöcke sind gerade
$ [mm] B_{i} [/mm] = [mm] \{ \omega \in \Omega | v_{i, \omega}= 1 \} [/mm] $, wobei
[mm] v_{i} [/mm] = [mm] (v_{i,\omega})_{\omega \in \Omega} [/mm] die Zeilen von $ J $ sind.

1) Sei $ C $ ein selbstdualer, 4-dividierbarer binärer [24,12,8]-Code mit Erzeugermatrix

[mm] \pmat{ (0,...,0) & 0 & 1 & (1,...,1) \\ 1_{11 \times 11} & (1,...,1)^{\tau} & (0,...,0)^{\tau} & A } [/mm] mit
$ A [mm] \in \{0,1\}^{11 \times 11} [/mm] $

Zeigen Sie, dass $ A + E $, wobei E die Matrix ist, die in jedem Eintrag eine Eins hat, Inzidenzmatrix eines $ 2 - (11, 5, 2) - $ Blockplans ist.

2) Zeigen Sie ferner, das es bis auf Nummerierung nur einen solchen gibt.

Hallo allerseits!

Da werden wir in Codierungstheorie plötzlich Hals über Kopf mit dem auf dem ersten Blick kombinatorischen Monstrum namens Blockplan konfrontiert. Irgendwie schmeckt mir das noch nicht so ganz.
Was hier in 1) zu zeigen ist, ist ja, dass die Zeilen von A genau 6 Einsen haben und dass für alle Paare $ 1 [mm] \le [/mm] i < j [mm] \le [/mm] 11 $ genau zwei Zeilen von A existieren, die in den entsprechenden Spalten einen Nulleintrag haben. Ersteres ist klar und liegt ab der Minimaldistanz und der 4-Dividierbarkeit des Codes. Aber beim anderen bin ich bislang nur gescheitert, hab versucht dies irgendwie aus der Selbstdualität zu folgern, das trug aber keine Früchte.

Und bei 2) habe ich keinen blassen Schimmer, außer vielleicht die viel zu aufwendige "Brute Force" Methode, einfach alle Teilmengen von 5-elementigen Teilmengen von $ [mm] \{1,...,11\} [/mm] $ zu untersuchen und festzustellen, dass die davon, die ein solcher Blockplan sind, alle im Nummerierungssinn äquivalent sind.  
Das muss doch auch irgendwie einfacher gehen. Mit Mitteln der Codierungstheorie vielleicht? Ein solcher Blockplan entspräche ja einem Code $ C [mm] \subset \IF_{2}^{11} [/mm] $, der nur Codewörter vom Gewicht 5 enthält, sodass jeder Vektor mit Gewicht 2 in genau zwei Kugeln mit Radius 3 um Codewörter liegt. Also wäre zu zeigen, dass ein solchen bis auf Vertauschung der Spalten eindeutig ist, aber warum ist er das?

        
Bezug
Blockplan: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 18.06.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de