www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Boolesche Algebra
Boolesche Algebra < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Boolesche Algebra: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:29 Mi 05.12.2007
Autor: babsbabs

Aufgabe
Sei M eine Menge aller Teiler von 60. Zeigen Sie, dass (m, ggT, kgV) eine Boolesche Algebra ist und bestimmen sie alle Komplemente.

So hab ich mal begonnen:

Ich habe die Teiler von 60 bestimmt:

M = {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}

1) Prüfung ob ein distributiver Verband vorliegt - ich denke, dass einer vorliegt

2) Prüfung ob es ein neutrales Element 0 [mm] \in [/mm] M bezüglich [mm] \vee [/mm] gibt;
0 ist kein Element von M also denke ich, dass dies nicht gegeben ist

3) Prüfung ob es ein neutrales Element bezüglich 1  [mm] \in [/mm] M bezüglich [mm] \wedge [/mm] gibt - ich denke, das ist gegeben

4) Prüfung ob es zu jedem a [mm] \in [/mm] M ein Komplement gibt
Da stehe ich komplett an - wie muss ich das Komplement ermitteln bzw was ist mein Komplement in dem Fall?

Kann mir jemand hier helfen?

Danke!


        
Bezug
Boolesche Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Fr 07.12.2007
Autor: babsbabs

Die Beispielangabe wurde geändert - bitte um Hilfe:


Zeigen Sie stattdessen, daß Die Menge M aller natürlichen Teiler von 60 zusammen mit ggT und kgV keine Boolesche Algebra bildet,
indem Sie ein Element a angeben, welches kein Komplement a' besitzt.

Bezug
                
Bezug
Boolesche Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 01:46 Sa 08.12.2007
Autor: Zneques

Hallo,

du solltest [mm] 0\in\IR [/mm] nicht mit der 0 als neutrales Element verwechseln.
In diesem Fall ist sie das neutrale Element [mm] x\in [/mm] M des ggT.
D.h. : ggT(a,x)=a  [mm] \forall a\in [/mm] M    (probiere mal a=60)

Für die 1 musst du nun genauso mit dem kgV vorgehen.

Jetzt, da du 0 und 1 kennst, kannst du versuchen die Komplemente zu finden.
Diese müssten dann  ggT(a [mm] ,\neg [/mm] a)=1  und  kgV(a [mm] ,\neg [/mm] a)=0  erfüllen.

(Wenn du noch keine Idee hast welches Element kein Komplement hat, fange am besten mit den großen Zahlen an zu testen)

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de