www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Borel Cantelli Lemma
Borel Cantelli Lemma < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Borel Cantelli Lemma: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:17 So 12.06.2011
Autor: jay91

Aufgabe
ich verstehe die folgenden Beispiele nicht so ganz:
1) sei [mm] (X_n) [/mm] eine Folge reellwertiger Zufallsvariablen, die der Bedingung [mm] \summe_{i=1}^{\infty} P(|X_n| [/mm] > [mm] \epsilon) [/mm] < [mm] \infty [/mm] genügt
warum folgt dann P(lim [mm] X_n [/mm] =0)=1
2) sei [mm] (X_n) [/mm] eine Folge von unabhängigen ZV'en, dann ist
[mm] A:=\{\summe_{n} X_n konvergiert\} [/mm] in der terminalen [mm] \sigma [/mm] Algebra, aber für festes c ist [mm] A_c:=\{\summe_{i=1}^{\infty}=c\} [/mm] nicht in der terminalen [mm] \sigma [/mm] Algebra, aber [mm] A_c [/mm] ist in der der [mm] \sigma [/mm] Algebra [mm] G:=X^{-1} [/mm] (K) wobei K die [mm] \sigma [/mm] Algebra der symmetrischen Mengen ist.

hey!

kann mir jemand die Beispiele bitte erklären.
wenn noch fragen bzgl. der Notation sind, einfach fragen.

mfg

        
Bezug
Borel Cantelli Lemma: Antwort
Status: (Antwort) fertig Status 
Datum: 11:49 Mo 13.06.2011
Autor: steppenhahn

Hallo,

wie du ja im Titel bereits deutlich machst, muss hier das Lemma von Borel-Cantelli verwendet werden.

> ich verstehe die folgenden Beispiele nicht so ganz:
>  1) sei [mm](X_n)[/mm] eine Folge reellwertiger Zufallsvariablen,
> die der Bedingung [mm]\summe_{i=1}^{\infty} P(|X_n|[/mm] > [mm]\epsilon)[/mm]
> < [mm]\infty[/mm] genügt
>  warum folgt dann P(lim [mm]X_n[/mm] =0)=1


Du hast also eine Folge von Ereignissen (Elementen der Sigma-Algebra) [mm] $B_k [/mm] := [mm] \{|X_k| > \varepsilon\}$, [/mm] und für diese gilt:

[mm] $\sum_{k=1}^{\infty}\IP(B_k) [/mm] < [mm] \infty$. [/mm]

Borel Cantelli liefert --> [mm] $\IP(B) [/mm] = 0$, wobei $B = [mm] \limsup_{k\to\infty} B_k [/mm] = [mm] \{\omega \in \Omega: \omega \in B_k \mbox{ für unendlich viele k}\}$. [/mm]

Das heißt: Auf der Menge [mm] $\Omega \textbackslash [/mm] N$ (mit N Nullmenge) gilt: [mm] $\omega \in B_k$ [/mm] nur für endlich viele k.
Nach Definition: Auf der Menge [mm] $\Omega \textbackslash [/mm] N$ (mit N Nullmenge) gilt: [mm] $|X_k(\omega)| [/mm] > [mm] \varepsilon$ [/mm] nur für endlich viele k.


--> Damit ist [mm] $X_k$ [/mm] auf [mm] $\Omega \textbackslash [/mm] N$ konvergent gegen 0!


>  2) sei [mm](X_n)[/mm] eine Folge von unabhängigen ZV'en, dann ist
>  [mm]A:=\{\summe_{n} X_n konvergiert\}[/mm] in der terminalen [mm]\sigma[/mm]
> Algebra, aber für festes c ist
> [mm]A_c:=\{\summe_{i=1}^{\infty}=c\}[/mm] nicht in der terminalen
> [mm]\sigma[/mm] Algebra, aber [mm]A_c[/mm] ist in der der [mm]\sigma[/mm] Algebra
> [mm]G:=X^{-1}[/mm] (K) wobei K die [mm]\sigma[/mm] Algebra der symmetrischen
> Mengen ist.

Arbeite hier mit dem zweiten Teil des Borel-Cantelli-Lemmas.
Probiere erstmal selbst und schreibe deine Versuche hierhin.

Grüße,
Stefan

Bezug
                
Bezug
Borel Cantelli Lemma: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:16 Di 14.06.2011
Autor: jay91

bei dem 2. Teil des Borell Cantelli Lemmas müssen die Zufallsvariablen paarweise unabhängig sein, das ist gegeben und außerdem muss [mm] \summe_{i=1}^{\infty} P(A_i) [/mm] = [mm] \infty [/mm] sein.
[mm] A:=\{\summe_{n} X_n konvergiert\} [/mm]
Beh: A ist in der terminalen [mm] \sigma [/mm] Algebra [mm] T_{\infty} [/mm]
[mm] T_{\infty}=\bigcap_{n=1}^{\infty} \sigma (X_m), [/mm] m [mm] \ge [/mm] n)
das folgt aus der Konvergenz Eigenschaft: für alle [mm] \epsilon [/mm] >0 ex. [mm] n(\epsilon): |\summe_{m \ge n(\epsilon)}|<\epsilon [/mm] ??
und wie soll ich jetzt den 2. Teil des Borel Cantelli Lemmas anwenden? ICh weiß doch gar nicht, dass die Reihe divergiert, oder??

aber für festes c ist [mm] A_c:=\{\summe_{i=1}^{\infty}X_i=c\} [/mm] nicht in der terminalen [mm] \sigma [/mm] Algebra.
Konvergiert die Reihe nicht gegen c?? und müsste somit auch in der terminalen [mm] \sigma [/mm] Algebra liegen?



Bezug
                        
Bezug
Borel Cantelli Lemma: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 Do 16.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de