www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Brauche Hilfe bei Integral
Brauche Hilfe bei Integral < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brauche Hilfe bei Integral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:52 Sa 04.10.2008
Autor: DarkAngel112

Aufgabe
[mm] \integral_{}^{}{\wurzel{(ax^2+bx+c) }dx} [/mm]

Hallo,

ich habe mich extra für die Lösung dieses Integrals hier eingelockt. Ich hoffe sehr dass mir jemand weiterhelfen kann.
Es gilt das Integral auf analytische Weise zu lösen. Lösbar ist es, da Derive 6 ein Ergebnis liefert.


Ich hoffe sehr ihr könnt mir helfen.
Viel Spass damit, dieses Integral macht mich nämlich noch ganz verrückt.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.onlinemathe.de/




        
Bezug
Brauche Hilfe bei Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:18 Sa 04.10.2008
Autor: abakus


> [mm]\integral_{a}^{b}{\wurzel{(ax^2+bx+c) }dx}[/mm]
>  Hallo,
>  
> ich habe mich extra für die Lösung dieses Integrals hier
> eingelockt. Ich hoffe sehr dass mir jemand weiterhelfen
> kann.
>  Es gilt das Integral auf analytische Weise zu lösen.
> Lösbar ist es, da Derive 6 ein Ergebnis liefert.
>  
>
> Ich hoffe sehr ihr könnt mir helfen.
>  Viel Spass damit, dieses Integral macht mich nämlich noch
> ganz verrückt.

Hallo,
ist es nur ungeschickt formuliert, oder stimmen die Integrationsgrenzen a und b tatsächlich mit den Parameterwerten a und b unter der Wurzel überein?
Gruß  Abakus



>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt: http://www.onlinemathe.de/
>  
>
>  


Bezug
                
Bezug
Brauche Hilfe bei Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:55 So 05.10.2008
Autor: DarkAngel112

ja stimmt das hat beim Erstllen wohl nicht so geklappt wie ich das wollte. Es soll ein unbestimmtes Integral sein.

Bezug
        
Bezug
Brauche Hilfe bei Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Sa 04.10.2008
Autor: Teufel

Hi und willkommen hier!

Ich nehme mal an, dass du nur das unbestimmte Integral willst, also ohne die Grenzen.

Ich wäre erstmal ein a unter der Wurzel ausklammern und das rausziehen, sodass vor dem x² nichts mehr steht.

[mm] \integral_{}^{}{\wurzel{ax^2+bx+c}dx}=\wurzel{a}\integral_{}^{}{\wurzel{x^2+\bruch{b}{a}x+\bruch{c}{a}}dx} [/mm]

Dann kannst du unter der Wurzel quadratische Ergänzung vornehmen.

Dann bleibt etwas in der Form [mm] ...=\wurzel{a}\integral_{}^{}{\wurzel{(x+n)^2+m}dx} [/mm] stehen.
Dann kannst du mit Substitution arbeiten (u=x+n) und unter der Wurzel steht nur noch u²+m. dx wird einfach zu du, da in der Ersetzung ja nur ein einfaches x steht.

Jetzt müsstest du m aus der Wurzel ziehen, sodass unter der Wurzel [mm] \bruch{1}{m}u²+1 [/mm] steht.

Jetzt müsstest du u durch [mm] \wurzel{m}*sinh(z) [/mm] ersetzen um das Integral letztendlich zu lösen. Keine schöne Angelegenheit, aber du wolltest es ja so ;)
Und m und n sind eben irgendwelche Ausdrücke mit a, b und c drinnen.

[anon] Teufel

Bezug
                
Bezug
Brauche Hilfe bei Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:03 So 05.10.2008
Autor: DarkAngel112

Hallo Teufel,

Danke für die Antwort. DIe Idee mit Substitution bis dahin kam mir auch schon. Ich habe versucht das Ganze auf
[mm] \integral_{}^{}{\wurzel{a²+x²} dx} [/mm]
umzustellen, da das in meiner Formelsammlung (Barth, Mühlbauer, Nikol, Wörle "Mathematische Formeln und Definitionen") als Beispiel mit Lösung steht steht.
Denn dein Lösungsweg mit sin... verstehe ich nicht. Sowas haben wir noch nicht durchgenommen.

Ist mein ansatz falsch? Könntet du mit das mit sin... genauer erklären?

Mfg Markus

Bezug
                        
Bezug
Brauche Hilfe bei Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 So 05.10.2008
Autor: Teufel

Hi!

Ok, an der Stelle musst du nur noch das a² zu einer 1 machen (wieder durch ausklammern). Und dann so ersetzen, dass vor der Ersetzungsvariable nichts steht, also unter der Wurzel muss dann sowas wie z²+1 stehen (genau wie bei einer Ersetzung mit Sinus oder Kosinus 1-x² stehen sollte).

Dann kann man die Hyperbelfunktionen (siehe []hier) benutzen. Sie hängen zwar schon mit den normalen trigonometrischen Funktionen zusammen, aber sie sind trotzdem anders.

Du brauchst hier also nicht den normalen Sinus, sondern den Sinus hyperbolicus (daher noch das h in sinh), oder auch einfach Hyperbelsinus.

Der ist definiert als [mm] sinh(x)=\bruch{e^{x}-e^{-x}}{2}. [/mm] Und dann gibt es auch noch unter anderem den Hyperbelkosinus, der als [mm] cosh(x)=\bruch{e^{x}+e^{-x}}{2} [/mm] definiert ist.

Genau wie beim normalen Sinus und Kosinus folgendes gilt: cos²x+sin²x=1, gilt bei sinh und cosh: cosh²x-sinh²x=1 (kannst du einfach nachrechnen mit den anderen Darstellungen der Hyperbelfunktionen, die ich dir gegeben habe!).
Außerdem gilt: (sinhx)'=coshx und (coshx)'=sinhx, auch einfach nachzurechnen, indem du die Darstellung mit dem e verwendest.

So viel zur Theorie ;)

Und jetzt siehst du, wenn du unter der Wurzel mit sinh(z) ersetzt, hättest du da sinh²z+1 zu stehen, was das selbe wie cosh²z ist.
Wenn du das Prinzip mit dem normalen Sinus und Kosinus verstanden hast, schaffst du das hiermit sicher auch, die Grundlagen kennst du ja jetzt!

Höchstens noch beim Rücksubstituieren bräuchtest du vielleicht Hilfe, da du ja dann irgendwann noch die Umkehrfunktion des Hyperbelsinus bräuchtest. Die Umkehrfunktionen der Hyperbelfunktionen sind die Areafunktionen. Wichtig für dich: []KLICK!

So, ich hoffe mal, dass das alles so stimmt, da ich selbst nicht alles nachgerechnet habe. Aber wenn etwas unerwartetes auftaucht, dann meld dich einfach nochmal ;)

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de