www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Bregman-Abstand
Bregman-Abstand < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bregman-Abstand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Mo 05.05.2008
Autor: Riley

Aufgabe
Für eine Funktion [mm] \phi: \IR \rightarrow \IR [/mm] die strikt konvex und differenzierbar ist im inneren von dom [mm] \phi, [/mm] definieren wir den Bregman-Abstand [mm] d_{\phi}: [/mm] dom [mm] \phi \times [/mm] int(dom [mm] \phi) \rightarrow \IR [/mm] :
[mm] d_{\phi}(x,y) [/mm] = [mm] \phi(x) [/mm] - [mm] \phi(y) [/mm] - [mm] \phi'(y)(x-y). [/mm]

(i) Berechne [mm] d_{\phi} [/mm] für [mm] \phi(t) [/mm] = [mm] \frac{1}{2} t^2. [/mm]

(ii) Beweise: [mm] d_{\phi}(x,y) \geq [/mm] 0, mit Gleichheit genau dann wenn x=y.
Ist [mm] d_{\phi} [/mm] eine Metrik für jedes [mm] \phi? [/mm]

Hallo,
ich schätze es geht bei der Aufgabe eigentlich hauptsächlich darum diese Definition zu verwenden. Hab aber trotzdem ein paar Fragen dazu...
(i) Hab ich berechnet mit [mm] \phi'(y) [/mm] = y
[mm] d_{\phi}(x,y) [/mm] = [mm] \frac{1}{2} x^2 [/mm] - [mm] \frac{1}{2} y^2 [/mm] - y (x-y) = [mm] (\frac{1}{\sqrt{2}} [/mm] x - [mm] \frac{1}{\sqrt{2}} y)^2. [/mm]
Stimmt das so?
Was kann ich mir aber nun unter dem Abstand geometrisch vorstellen? Wie könnte man das skizzieren?

(ii) Hier hab ich überlegt, dass weil ja [mm] \phi [/mm] diffbar und strikt konvex gelten muss, dass
[mm] \phi(x) \geq \phi'(y) [/mm] (x-y) + [mm] \phi(y) [/mm] gilt, d.h. dass in jedem Punkt y der Graph von [mm] \phi [/mm] oberhalb der Tangente im Punkt y an [mm] \phi [/mm] verlaufen muss. Das kann man so sagen, oder?
Gut, dann ist es nur noch eine äquivalente Umformung und wir haben
[mm] \phi(x) [/mm] - [mm] \phi(y) [/mm] - [mm] \phi'(y)(x-y) \geq [/mm] 0

Jetzt weiß ich nur nicht mit der Aussage, dass Gleichheit genau dann wenn x=y ist gilt, also [mm] d_{\phi}(x,y) [/mm] = 0 [mm] \gdw [/mm] x=y.
Zur Hinrichtung: Sei [mm] d_{\phi}(x,y) [/mm] = 0.
[mm] \gdw \phi(x) [/mm] - [mm] \phi(y) [/mm] = [mm] \phi'(x-y) [/mm]
Warum gilt das nur wenn x=y ist?
Wäre super, wenn mir hier jemand weiterhelfen könnte, da steh ich echt auf dem Schlauch *help*

Liebe Grüße,
Riley

        
Bezug
Bregman-Abstand: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Di 06.05.2008
Autor: rainerS

Hallo Riley!

> Für eine Funktion [mm]\phi: \IR \rightarrow \IR[/mm] die strikt
> konvex und differenzierbar ist im inneren von dom [mm]\phi,[/mm]
> definieren wir den Bregman-Abstand [mm]d_{\phi}:[/mm] dom [mm]\phi \times[/mm]
> int(dom [mm]\phi) \rightarrow \IR[/mm] :
>  [mm]d_{\phi}(x,y)[/mm] = [mm]\phi(x)[/mm] - [mm]\phi(y)[/mm] - [mm]\phi'(y)(x-y).[/mm]
>  
> (i) Berechne [mm]d_{\phi}[/mm] für [mm]\phi(t)[/mm] = [mm]\frac{1}{2} t^2.[/mm]
>  
> (ii) Beweise: [mm]d_{\phi}(x,y) \geq[/mm] 0, mit Gleichheit genau
> dann wenn x=y.
>  Ist [mm]d_{\phi}[/mm] eine Metrik für jedes [mm]\phi?[/mm]
>  Hallo,
>  ich schätze es geht bei der Aufgabe eigentlich
> hauptsächlich darum diese Definition zu verwenden. Hab aber
> trotzdem ein paar Fragen dazu...
>  (i) Hab ich berechnet mit [mm]\phi'(y)[/mm] = y
>  [mm]d_{\phi}(x,y)[/mm] = [mm]\frac{1}{2} x^2[/mm] - [mm]\frac{1}{2} y^2[/mm] - y
> (x-y) = [mm](\frac{1}{\sqrt{2}}[/mm] x - [mm]\frac{1}{\sqrt{2}} y)^2.[/mm]
>  
> Stimmt das so?
>  Was kann ich mir aber nun unter dem Abstand geometrisch
> vorstellen? Wie könnte man das skizzieren?
>  
> (ii) Hier hab ich überlegt, dass weil ja [mm]\phi[/mm] diffbar und
> strikt konvex gelten muss, dass
>  [mm]\phi(x) \geq \phi'(y)[/mm] (x-y) + [mm]\phi(y)[/mm] gilt, d.h. dass in
> jedem Punkt y der Graph von [mm]\phi[/mm] oberhalb der Tangente im
> Punkt y an [mm]\phi[/mm] verlaufen muss. Das kann man so sagen,
> oder?
>  Gut, dann ist es nur noch eine äquivalente Umformung und
> wir haben
>  [mm]\phi(x)[/mm] - [mm]\phi(y)[/mm] - [mm]\phi'(y)(x-y) \geq[/mm] 0
>  
> Jetzt weiß ich nur nicht mit der Aussage, dass Gleichheit
> genau dann wenn x=y ist gilt, also [mm]d_{\phi}(x,y)[/mm] = 0 [mm]\gdw[/mm]
> x=y.
>  Zur Hinrichtung: Sei [mm]d_{\phi}(x,y)[/mm] = 0.
>  [mm]\gdw \phi(x)[/mm] - [mm]\phi(y)[/mm] = [mm]\phi'(x-y)[/mm]
>  Warum gilt das nur wenn x=y ist?

Die Richtung [mm] $x=y\implies d_{\phi}(x,y)=0$ [/mm] ist ja offensichtlich. Für die andere Richtung kannst du es mit einem Widerspruch probieren:

Angenommen, es gebe ein Paar [mm] $x\not=y$ [/mm] mit [mm] $d_{\phi}(x,y)=0$. [/mm] Dann folgt

[mm] \bruch{\phi(x)-\phi(y)}{x-y} = \phi'(y) [/mm].

Siehst du den Widerspruch?

Viele Grüße
   Rainer

Bezug
                
Bezug
Bregman-Abstand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:02 Di 06.05.2008
Autor: Riley

Hi Rainer,
cool danke für deine Antwort. Achja, die Richtung für x=y [mm] \Rightarrow d_{\phi}(x,y) [/mm] = 0 ist klar.
Aber der Widerspruch der anderen Richtung ist mir noch nicht so klar, es gilt doch eigentlich

[mm] \phi'(y) [/mm] = [mm] \lim_{x \rightarrow y} \frac{\phi(x) - \phi(y)}{x-y} [/mm] ?

Ist das der Widerspruch, dass das ohne Grenzübergang so nicht stimmt?

Viele Grüße,
Riley


edit: ... und hast du mir noch einen Tipp, was (i) geometrisch bedeutet?

Bezug
                        
Bezug
Bregman-Abstand: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Di 06.05.2008
Autor: rainerS

Hallo Riley!

> Hi Rainer,
>  cool danke für deine Antwort. Achja, die Richtung für x=y
> [mm]\Rightarrow d_{\phi}(x,y)[/mm] = 0 ist klar.
>  Aber der Widerspruch der anderen Richtung ist mir noch
> nicht so klar, es gilt doch eigentlich
>  
> [mm]\phi'(y)[/mm] = [mm]\lim_{x \rightarrow y} \frac{\phi(x) - \phi(y)}{x-y}[/mm]
> ?
>  
> Ist das der Widerspruch, dass das ohne Grenzübergang so
> nicht stimmt?

[mm] $\phi$ [/mm] ist eine streng konvexe Funktion, und [mm]\frac{\phi(x) - \phi(y)}{x-y}[/mm] ist die Steigung der Sekante zwischen den Punkten [mm] $(x,\phi(x))$ [/mm] und [mm] $(y,\phi(y))$. [/mm]

Viele Grüße
   Rainer

Bezug
                                
Bezug
Bregman-Abstand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:32 Di 06.05.2008
Autor: Riley

Hi Rainer,
ah, ich glaube ich fange an zu verstehen.
Da [mm] \phi [/mm] strikt konvex ist, muss ja gelten:

[mm] \frac{\phi(x) - \phi(y)}{x-y} [/mm] > [mm] \phi'(y). [/mm]

Hab ich jetzt den Widerspruch erkannt?

Wie ist dieser 2.Teil der Aufgabe eigentlich zu verstehen. Muss ich zuerst zeigen, dass grundsätzlich [mm] d_{\phi}(x,y) \geq [/mm] 0 ist, und dann die genau dann wenn Aussage oder nur letzteres?

Viele Grüße & vielen Dank,
Riley

Bezug
                                        
Bezug
Bregman-Abstand: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 Di 06.05.2008
Autor: rainerS

Hallo Riley!

> Hi Rainer,
>  ah, ich glaube ich fange an zu verstehen.
> Da [mm]\phi[/mm] strikt konvex ist, muss ja gelten:
>  
> [mm]\frac{\phi(x) - \phi(y)}{x-y}[/mm] > [mm]\phi'(y).[/mm]

> Hab ich jetzt den Widerspruch erkannt?

[ok]

> Wie ist dieser 2.Teil der Aufgabe eigentlich zu verstehen.
> Muss ich zuerst zeigen, dass grundsätzlich [mm]d_{\phi}(x,y) \geq[/mm]
> 0 ist, und dann die genau dann wenn Aussage oder nur
> letzteres?

Du musst schon beides zeigen, denn die genau dann wenn Aussage liefert dir ja nicht das Vorzeichen von [mm] $d_\phi$. [/mm]

Viele Grüße
   Rainer

Bezug
                                                
Bezug
Bregman-Abstand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Mi 07.05.2008
Autor: Riley

Hi Rainer,
okay cool, danke.
Dass [mm] d_{\phi} \geq [/mm] 0 ist, funktioniert doch mit dem gleichen Argument über die strikt Konvexität, oder? Hab oben das strikt nicht beachtet, aber aus [mm] \phi [/mm] strikt konvex folgt:
[mm] \phi(x) [/mm] > [mm] \phi'(y) [/mm] (x-y) + [mm] \phi(y) [/mm] , d.h. [mm] \phi(x)-\phi(y) [/mm] - [mm] \phi'(y) [/mm] (x-y) >0
und Gleichheit eben nur für x=y. Stimmt das dann so?

Viele Grüße,
Riley

Bezug
                                                        
Bezug
Bregman-Abstand: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Do 08.05.2008
Autor: rainerS

Hallo Riley,

>  Dass [mm]d_{\phi} \geq[/mm] 0 ist, funktioniert doch mit dem
> gleichen Argument über die strikt Konvexität, oder? Hab
> oben das strikt nicht beachtet, aber aus [mm]\phi[/mm] strikt konvex
> folgt:
>  [mm]\phi(x)[/mm] > [mm]\phi'(y)[/mm] (x-y) + [mm]\phi(y)[/mm] , d.h. [mm]\phi(x)-\phi(y)[/mm]

> - [mm]\phi'(y)[/mm] (x-y) >0
>  und Gleichheit eben nur für x=y. Stimmt das dann so?

Das sieht gut aus.

Viele Grüße
   Rainer

Bezug
                                                                
Bezug
Bregman-Abstand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Do 08.05.2008
Autor: Riley

Hi Rainer,
okay, danke! :-)
Dann bleibt nur noch die Frage, was [mm] d_{\phi}(x,y) [/mm] = [mm] \frac{1}{2} (x-y)^2 [/mm] geometrisch bedeutet? Irgendwie fehlt mir hier jegliche Vorstellung ;-(

Und die Frage ob [mm] d_{\phi} [/mm] für jedes [mm] \phi [/mm] eine Metrik ist? Ich vermute mal nur für konvexe [mm] \phi, [/mm] da ja für eine Metrik genau das gelten muss, was wir gezeigt haben, also d(x,y) [mm] \geq [/mm] 0 und gleich Null genau dannw wenn x=y.
Wir haben ja die strikte Konvexität genutzt um das zu zeigen, aber daraus kann man ja eigentlich nicht schließen dass es für nicht - konvexe Funktionen nicht gilt, oder? Wie muss man da dann rangehen?

Viele Grüße,
Riley

Bezug
                                                                        
Bezug
Bregman-Abstand: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 Do 08.05.2008
Autor: rainerS

Hallo Riley!

>  Dann bleibt nur noch die Frage, was [mm]d_{\phi}(x,y)[/mm] =
> [mm]\frac{1}{2} (x-y)^2[/mm] geometrisch bedeutet? Irgendwie fehlt
> mir hier jegliche Vorstellung ;-(

Gute Frage.

Hmm, wenn ich [mm] $\phi(x)$ [/mm] als Taylorentwicklung von [mm] $\phi$ [/mm] um den Punkt $y$ darstelle, dann ist [mm]d_{\phi}(x,y)[/mm] Alles, was hinter dem linearen Term kommt.

> Und die Frage ob [mm]d_{\phi}[/mm] für jedes [mm]\phi[/mm] eine Metrik ist?
> Ich vermute mal nur für konvexe [mm]\phi,[/mm] da ja für eine Metrik
> genau das gelten muss, was wir gezeigt haben, also d(x,y)
> [mm]\geq[/mm] 0 und gleich Null genau dannw wenn x=y.
> Wir haben ja die strikte Konvexität genutzt um das zu
> zeigen, aber daraus kann man ja eigentlich nicht schließen
> dass es für nicht - konvexe Funktionen nicht gilt, oder?

Nimm doch einfach mal eine (strikt) konkave Funktion!

Viele Grüße
   Rainer

Bezug
                                                                                
Bezug
Bregman-Abstand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:21 Fr 09.05.2008
Autor: Riley

Hi Rainer,

> Gute Frage.
>  
> Hmm, wenn ich [mm]\phi(x)[/mm] als Taylorentwicklung von [mm]\phi[/mm] um den
> Punkt [mm]y[/mm] darstelle, dann ist [mm]d_{\phi}(x,y)[/mm] Alles, was hinter
> dem linearen Term kommt.

Hmm, und wie stellst du dir alles hinter dem linearen Term geometrisch vor?


> Nimm doch einfach mal eine (strikt) konkave Funktion!

Dann wäre doch [mm] d_{\phi}(x,y) [/mm] < 0 für x [mm] \not=y [/mm] , oder? Also keine Metrik.
Gibt es eigentlich Funktionen die weder konvex noch konkav sind...?!?

Viele Grüße,
Riley

Bezug
                                                                                        
Bezug
Bregman-Abstand: Antwort
Status: (Antwort) fertig Status 
Datum: 01:58 Fr 09.05.2008
Autor: rainerS

Hallo Riley!

> Hi Rainer,
>  
> > Gute Frage.
>  >  
> > Hmm, wenn ich [mm]\phi(x)[/mm] als Taylorentwicklung von [mm]\phi[/mm] um den
> > Punkt [mm]y[/mm] darstelle, dann ist [mm]d_{\phi}(x,y)[/mm] Alles, was hinter
> > dem linearen Term kommt.
>  
> Hmm, und wie stellst du dir alles hinter dem linearen Term
> geometrisch vor?

Das ist der vertikale Abstand zwischen dem Graphen von [mm] $\phi$ [/mm] und der Tangenten an den Punkt [mm] $(y,\phi(y))$, [/mm] und zwar an der Stelle x.

> > Nimm doch einfach mal eine (strikt) konkave Funktion!
>  
> Dann wäre doch [mm]d_{\phi}(x,y)[/mm] < 0 für x [mm]\not=y[/mm] , oder? Also
> keine Metrik.

Es gibt noch einen anderen Punkt: Eine Metrik ist a) symmetrisch: $d(x,y)=d(y,x)$ und b) erfüllt die Dreiecksungleichung. Ist [mm] $d_\phi(x,y)$ [/mm] für beliebige konvexe Funktionen symmetrisch?

> Gibt es eigentlich Funktionen die weder konvex noch konkav
> sind...?!?

Sinus und Cosinus zum Beispiel.

Viele Grüße
   Rainer

Bezug
                                                                                                
Bezug
Bregman-Abstand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Sa 10.05.2008
Autor: Riley

HI Rainer,
dane für deine Hilfe. Ich hab die Symmetrieeigenschaft für [mm] \phi(t) [/mm] = [mm] \frac{1}{4} t^4 [/mm] ausprobiert:
[mm] d_{\phi}(x,y) [/mm] = [mm] \frac{1}{4} x^4 [/mm] - [mm] xy^3 [/mm] + [mm] \frac{3}{4} y^4 [/mm] und

[mm] d_{\phi}(y,x) [/mm] = [mm] \frac{1}{4} y^4 [/mm] - [mm] x^3 [/mm] y + [mm] \frac{3}{4} x^4. [/mm]

Ist also nicht erfüllt. Wie kann man denn die Funktionen für die es gilt finden? Kann man das überhaupt? Oder alle die für die es nicht eine Metrik ist?

Viele Grüße,
Riley

Bezug
                                                                                                        
Bezug
Bregman-Abstand: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 Sa 10.05.2008
Autor: rainerS

Hallo Riley!

>  dane für deine Hilfe. Ich hab die Symmetrieeigenschaft für
> [mm]\phi(t)[/mm] = [mm]\frac{1}{4} t^4[/mm] ausprobiert:
>  [mm]d_{\phi}(x,y)[/mm] = [mm]\frac{1}{4} x^4[/mm] - [mm]xy^3[/mm] + [mm]\frac{3}{4} y^4[/mm]
> und
>  
> [mm]d_{\phi}(y,x)[/mm] = [mm]\frac{1}{4} y^4[/mm] - [mm]x^3[/mm] y + [mm]\frac{3}{4} x^4.[/mm]
>  
> Ist also nicht erfüllt. Wie kann man denn die Funktionen
> für die es gilt finden? Kann man das überhaupt? Oder alle
> die für die es nicht eine Metrik ist?

Setze die allgemeine Bedingung [mm]d_{\phi}(x,y)=d_{\phi}(y,x)[/mm] ein, und du bekommst eine Bedingung an die Funktion:

[mm] \bruch{\phi(x)-\phi(y)}{x-y} = \bruch{1}{2}(\phi'(x)+\phi'(y)) [/mm]

Mit anderen Worten: die Steigung der Sekanten zwischen zwei Punkten des Graphen von [mm] $\phi$ [/mm] ist immer der Mittelwert der Tangentensteigung in diesen Punkten. Für eine Gerade ist das sicher erfüllt. Im Moment fällt mir keine andere Kurve ein, für die es gilt...

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de