www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Bruch-Gleichung umstellen
Bruch-Gleichung umstellen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruch-Gleichung umstellen: Nach omega umstellen
Status: (Frage) beantwortet Status 
Datum: 12:18 So 18.11.2012
Autor: fse

Aufgabe
Hallo,
ich will folgende Gleichung nach [mm] \omega [/mm] umformen.
L*C- [mm] \bruch{\omega*C}{{(\bruch{1}{R_1})}^2+(\omega*C)^2}=0 [/mm]

Irgendwie weiß ich nicht wie ich vorgehen soll!
[mm] \bruch{\omega*C}{{(\bruch{1}{R_1})}^2+(\omega*C)^2}=L*C [/mm]

Kann man das [mm] \omega [/mm] irgendwie ausklammern oder wie gehe ich am besten vor ??

Gruß fse

        
Bezug
Bruch-Gleichung umstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:22 So 18.11.2012
Autor: fred97


> Hallo,
>  ich will folgende Gleichung nach [mm]\omega[/mm] umformen.
>  L*C-
> [mm]\bruch{\omega*C}{{(\bruch{1}{R_1})}^2+(\omega*C)^2}=0[/mm]
>  Irgendwie weiß ich nicht wie ich vorgehen soll!
>   [mm]\bruch{\omega*C}{{(\bruch{1}{R_1})}^2+(\omega*C)^2}=L*C[/mm]
>  
> Kann man das [mm]\omega[/mm] irgendwie ausklammern oder wie gehe ich
> am besten vor ??

Multipliziere mit [mm] {(\bruch{1}{R_1})}^2+(\omega*C)^2 [/mm] durch.
Dann bekommst Du eine quadratische Gleichung füe [mm] \omega. [/mm]

FRED

>  
> Gruß fse


Bezug
                
Bezug
Bruch-Gleichung umstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 So 18.11.2012
Autor: fse

Hallo,
hab nun folgendes gerechnet:


[mm] \bruch{\omega\cdot{}C}{{(\bruch{1}{R_1})}^2+(\omega\cdot{}C)^2}=0 [/mm]



[mm] \bruch{L*\omega*(C^2*\omega^2*R^2+1)-C*\omega*R^2}{C^2*\omega^2*R^2+1}=0 [/mm]

[mm] L*\omega*(C^2*\omega^2*R^2+1)-C*\omega*R^2=0 [/mm]

[mm] \omega(L*\omega^2*C^2*R^2+L-C*R^2)=0 [/mm]

[mm] (L*\omega^2*C^2*R^2+L-C*R^2)=0 [/mm]

[mm] \omega=\wurzel{\bruch{C*R^2-L}{L*R^2*C^2}} [/mm]

Stimmt das soweit??

Wäre es einfacher gegangen??
und
ist  [mm] \omega [/mm] =0 dann auch eine Lösung??


Gruß FSE

Bezug
                        
Bezug
Bruch-Gleichung umstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 So 18.11.2012
Autor: reverend

Hallo fse,

was ist jetzt los?

>  hab nun folgendes gerechnet:
>  
> [mm]\bruch{\omega\cdot{}C}{{(\bruch{1}{R_1})}^2+(\omega\cdot{}C)^2}=0[/mm]

Wo ist der Summand L*C geblieben, den Du im ersten Post noch hattest?

Mit dieser Gleichung hier wäre man ja schnell fertig. Der Nenner darf nicht Null werden (und kann es mit einem positiven [mm] R_1 [/mm] auch nicht), also wird der ganze Bruch Null, wenn einer der beiden Faktoren im Zähler Null wird. Also zwei Lösungen: [mm] \omega=0 [/mm] und $C=0$.

> [mm]\bruch{L*\omega*(C^2*\omega^2*R^2+1)-C*\omega*R^2}{C^2*\omega^2*R^2+1}=0[/mm]

Hier scheint der fehlende Summand zumindest teilweise doch wieder aufzutauchen. Du hast den Nenner auf den Unternenner [mm] R_1^2 [/mm] gebracht und den Doppelbruch aufgelöst.
Wenn der erste Summand der Gleichung aber L*C hieß, dann stimmt hier der Zähler nicht. Er müsste doch anfangen mit [mm] L*\blue{C}*(C^2*\cdots) [/mm]

Alle weiteren Umformungen sind damit doch hinfällig.

> [mm]L*\omega*(C^2*\omega^2*R^2+1)-C*\omega*R^2=0[/mm]
>  
> [mm]\omega(L*\omega^2*C^2*R^2+L-C*R^2)=0[/mm]
>  
> [mm](L*\omega^2*C^2*R^2+L-C*R^2)=0[/mm]
>  
> [mm]\omega=\wurzel{\bruch{C*R^2-L}{L*R^2*C^2}}[/mm]
>  
> Stimmt das soweit??

Ja, das würde sonst stimmen, jedenfalls von den Umformungen her. Vergiss aber nicht, dass es auch eine negative Wurzellösung gibt (auch wenn die für [mm] \omega [/mm] ja keinen Sinn macht.

> Wäre es einfacher gegangen??
>  und
> ist  [mm]\omega[/mm] =0 dann auch eine Lösung??

In Deiner obigen Rechnung ja, aber nach Korrektur des Fehlers wohl nicht mehr, oder?

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de