www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Bruch
Bruch < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruch: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:08 Mi 24.09.2008
Autor: vlue

Aufgabe
   [mm] \bruch{a+b}{a-b} [/mm]  *(a-b)²

[mm] \bruch{a+b}{(a-b)³} [/mm]
Stimmt dieses ergebniss ich habe es mit dem nenner multipliziert
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Mi 24.09.2008
Autor: algieba


>  [mm]\bruch{a+b}{(a-b)³}[/mm]
>  Stimmt dieses ergebniss ich habe es mit dem nenner
> multipliziert


Hi

Das Ergebnis stimmt leider nicht. Du darfst so etwas nicht mit dem Nenner multiplizieren.

Du kannst diese Aufgabe ja auch als [mm]\bruch{a+b}{a-b} * \bruch{(a-b)*(a-b)}{1} [/mm] schreiben.
Jetzt hast du eine ganz normale Multiplikation von Brüchen wo du nur Zähler * Zähler, und Nenner * Nenner machen musst. (Der Zähler ist obern, der Nenner ist unten). Du erhälst dann einen Bruch:
[mm]\bruch{(a+b)*(a-b)*(a-b)}{(a-b) * 1}[/mm] Jetzt kannst du sehen, dass oben eine Klammer mit (a-b) steht und unten auch. Da alle Klammern mit einem Malzeichen verbunden sind, kannst du die beiden gleichen Klammern oben unten einfach streichen (dieser Vorgang heißt "den Bruch kürzen") Dann entsteht der Bruch [mm]\bruch{(a+b)*(a-b)}{1}[/mm].
Da im Nenner eine 1 steht kann man die einfach weglassen und [mm](a+b)*(a-b)[/mm] schreiben. Falls ihr das schon hattet könntest du jetzt noch die dritte binomische Formel erkennen, also kommt hier [mm]a^2-b^2[/mm] raus.

Ich hoffe ich konnte dir helfen

Viele Grüße
algieba





Bezug
                
Bezug
Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Mi 24.09.2008
Autor: vlue

danke für die antwort ich dachte bei brüchen muss man überkreuzt multiplizieren =(

Bezug
                        
Bezug
Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Mi 24.09.2008
Autor: algieba

Ich schreib dir mal ein paar Bruchregeln auf:

[mm] \bruch{a}{b} * \bruch{c}{d} = \bruch{a*c}{b*d} [/mm]

[mm] \bruch{a*b}{b} = \bruch{a}{1} = a [/mm]

[mm] \bruch{a}{b} : \bruch{c}{d} = \bruch{a}{b} * \bruch{d}{c} = \bruch{a*d}{b*c} [/mm]

Wahrscheinlich hast du es mit dem letzten Beispiel verwechselt. Wenn man einen Bruch durch einen anderen Bruch teilen will, muss man den Kehrbruch des hinteren Bruches nehmen. (Kehrbruch bedeutet: du musst den Zähler und den Nenner vertauschen) und dann den ersten Bruch mal den Kehrbruch des zweiten.

Gruß
algieba





Bezug
                                
Bezug
Bruch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 Mi 24.09.2008
Autor: vlue

Vielen Dank dass hab ich verwechselt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de