www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Bruchumformung
Bruchumformung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchumformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 Di 03.02.2009
Autor: Englein89

Hallo,

kann mir jemand sagen, wieso

[mm] \bruch{t^2-1}{t+1}=t-1 [/mm] ist? Wenn ich Zahlen einsetze macht es Sinn, aber gibt es nicht eine Umformung, die mir das ganz schnell zeigt?

        
Bezug
Bruchumformung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Di 03.02.2009
Autor: schachuzipus

Hallo Englein,

> Hallo,
>  
> kann mir jemand sagen, wieso
>  
> [mm]\bruch{t^2-1}{t+1}=t-1[/mm] ist? Wenn ich Zahlen einsetze macht
> es Sinn, aber gibt es nicht eine Umformung, die mir das
> ganz schnell zeigt?

Ich denke ernsthaft, du solltest mal ein Päuschen einlegen und einen großen Pott [kaffeetrinker] trinken und frische Luft schnappen.

Du machst zuviele Aufgaben und bist dabei natürlicherweise zu unkonzentriert.

Diese Aufgabe kannst du 10000000% selber und das im Schlaf (oder eher, wenn du ausgeruht bist ;-))

Denke mal für den Zähler an die 3. binomische Formel ...

LG

schachuzipus


Bezug
                
Bezug
Bruchumformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:31 Di 03.02.2009
Autor: Englein89

[mm] \bruch{(t+1)(t-1)}{t+1} [/mm] [lichtaufgegangen]

Bezug
                
Bezug
Bruchumformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Mi 04.02.2009
Autor: Englein89

Kann ich das eigentlich auch anwenden bei

[mm] \bruch{t^2+1}{t-1}? [/mm] Die dritte binomische Formel gilt ja nur bei [mm] a^2-b^2. [/mm]

Bezug
                        
Bezug
Bruchumformung: hier nicht
Status: (Antwort) fertig Status 
Datum: 17:22 Mi 04.02.2009
Autor: Loddar

Hallo Englein!


Richtig erkannt: im Reellen kannst Du [mm] $t^2+1$ [/mm] nicht gemäß binomischer Formel faktorisieren.


Gruß
Loddar


Bezug
                                
Bezug
Bruchumformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Mi 04.02.2009
Autor: Englein89

Kannst du mir dann verraten wie ich

[mm] \bruch{t^2+1}{t-1} [/mm] umformen kann um auf (t-1) zu kommen?

Bezug
                                        
Bezug
Bruchumformung: nö!
Status: (Antwort) fertig Status 
Datum: 17:24 Mi 04.02.2009
Autor: Loddar

Hallo Englein!


Das kann ich nicht, weil es nicht geht ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de