www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - Brüche richtig ausrechnen
Brüche richtig ausrechnen < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brüche richtig ausrechnen: Frage
Status: (Frage) beantwortet Status 
Datum: 10:57 So 18.09.2005
Autor: Mathe

Hi,

ich bin gerade dabei, Differentialrechnung zu lernen und hier bin ich auf eine Wissenslücke von mir gestoßen - Ausrechnen von Brüchen ;-)


    1             1
---------   -  --------
  [mm] x_{0} [/mm] + h           [mm] x_{0} [/mm]
------------------------
           h

Kann mir jemand den mathematischen Hintergrund erklären, wie ich alles so auflösen kann, dass ich keine drei sondern nur noch einen Bruchstrich habe?

Sehr gerne kann auch einen Link ins Internet mit einer kleinen Exkursion für mein Problem gepostet werden, da ich bisher nur Infos gefunden habe, wie man "normale" Brüche ausrechnet.

Die Lösung ist mir bekannt, der Rechenweg dorthin jedoch nicht.

Lieben Gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Brüche richtig ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 So 18.09.2005
Autor: Bastiane

Hallo Mathe!

[willkommenmr]

> ich bin gerade dabei, Differentialrechnung zu lernen und
> hier bin ich auf eine Wissenslücke von mir gestoßen -
> Ausrechnen von Brüchen ;-)

Na, da hast du aber bei deiner Angabe über den mathematischen Background geschummelt. Oder macht man Differentialrechnung neuerdings schon in der ersten Klasse? Und Brüche? Die auch? ;-)


> 1             1
>   ---------   -  --------
>    [mm]x_{0}[/mm] + h           [mm]x_{0}[/mm]
>  ------------------------
>             h
>  
> Kann mir jemand den mathematischen Hintergrund erklären,
> wie ich alles so auflösen kann, dass ich keine drei sondern
> nur noch einen Bruchstrich habe?

Also, man kann Brüche hier auch sehr schön mit dem Formeleditor darstellen:

Du meinst wohl:

[mm] \bruch{\bruch{1}{x_0+h}-\bruch{1}{x_0}}{h} [/mm]

Was macht man denn, wenn man Brüche dividiert? Man multipliziert mit dem Kehrbruch, das ist dir sicher bekannt. Und was ist der Kehrbruch von h? Natürlich [mm] \bruch{1}{h}. [/mm] Also können wir auch schreiben:

[mm] (\bruch{1}{x_0+h}-\bruch{1}{x_0})*\bruch{1}{h} [/mm]

und da brauchen wir jetzt nur noch die Klammer auszumultiplizieren:

[mm] \bruch{1}{x_0+h}*\bruch{1}{h}-\bruch{1}{x_0}*\bruch{1}{h} [/mm] = [mm] \bruch{1}{(x_0+h)*h}-\bruch{1}{x_0*h} [/mm]

Schaffst du den Rest nun alleine?

> Sehr gerne kann auch einen Link ins Internet mit einer
> kleinen Exkursion für mein Problem gepostet werden, da ich
> bisher nur Infos gefunden habe, wie man "normale" Brüche
> ausrechnet.

Also, ich kenne hierzu keinen Link, aber ich denke, dass ich dir deinen Bruch in einen "normalen" umgewandelt habe, oder?

Viele Grüße
Bastiane
[banane]


Bezug
                
Bezug
Brüche richtig ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 So 18.09.2005
Autor: Mathe

Hi,

danke für die Antwort und danke für den Tipp mit dem Formeleditor!

Mit deiner Antwort komme ich leider nicht mit:

$ [mm] \bruch{\bruch{1}{x_0+h}-\bruch{1}{x_0}}{h} [/mm] $ soll ergeben: $ [mm] \bruch{x_0-(x_0+h)}{x_0(x_0+h)h} [/mm] $ und dann $ [mm] \bruch{-1}{x_0(x_0+h)} [/mm] $

Ich habe das mal mit  $ [mm] (\bruch{1}{x_0+h}-\bruch{1}{x_0})\cdot{}\bruch{1}{h} [/mm] $ nachgerechnet, ich glaube, ich muss da irgendwie anders rechnen.

Oder stehe ich gerade zu sehr auf dem Schlauch?

Danke & Gruß

Bezug
                        
Bezug
Brüche richtig ausrechnen: weitere Hilfe
Status: (Antwort) fertig Status 
Datum: 12:28 So 18.09.2005
Autor: Zwerglein

Hi, Mathe,

(bist eigentlich "in der falschen Abteilung" gelandet: Deine Frage gehört eher NICHT in die Klassen 5 - 8!)

Bei Deiner Frage geht es ja letztlich darum, den Bruch durch h zu kürzen.

Du musst zunächst den Zähler in einen einzigen Bruch verwandeln:

[mm] \bruch{1}{x_{o}+h} [/mm] - [mm] \bruch{1}{x_{o}} [/mm]  =(***)
Hauptnenner: [mm] (x_{o}+h)*x_{o} [/mm]

Daher: (***) =  [mm] \bruch{x_{o}}{(x_{o}+h)x_{o}} [/mm] - [mm] \bruch{x_{o}+h}{(x_{o}+h)x_{o}} [/mm] =
[mm] \bruch{x_{o}-(x_{o}+h)}{(x_{o}+h)x_{o}} [/mm]
= [mm] \bruch{-h}{(x_{o}+h)x_{o}} [/mm]

Jetzt kannst Du das in Deinem ursprünglichen Term verwenden:

[mm] \bruch{\bruch{-h}{(x_{o}+h)x_{o}}}{h} [/mm]

Wie wandelt man nun einen solchen Doppelbruch in einen einfachen Bruch um?
Nun: Indem man den Zählerbruch mit dem Kehrwert des Nenners multipliziert!
Der Kehrwert von h aber ist [mm] \bruch{1}{h}, [/mm] daher:

[mm] \bruch{-h}{(x_{o}+h)x_{o}} [/mm] * [mm] \bruch{1}{h} [/mm]

= [mm] \bruch{-h}{(x_{o}+h)x_{o}*h} [/mm]

Und nun (endlich !!!) kannst Du durch h kürzen:

[mm] \bruch{-1}{(x_{o}+h)x_{o}} [/mm]

Danach käme die Grenzwertbildung:
Wenn du jetzt h gegen 0 gehen lässt, kommt als Grenzwert
[mm] \bruch{-1}{(x_{o}+0)x_{o}} [/mm] = [mm] \bruch{-1}{x_{o}^{2}} [/mm] raus.
Dies ist die Steigung des Graphen an der Stelle [mm] x_{o}. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de