www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Bücherstapeln
Bücherstapeln < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bücherstapeln: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:52 Do 25.03.2010
Autor: dynamitesu

Aufgabe
2 Bücher sollen auf 3 Stapel verteilt werden. Kein Stapel soll leer bleiben.

a) Wie viele Möglichkeiten gibt es, die Bücher anzuordnen, wenn die Bücher und die Stapel nicht unterscheidbar sind?

b) Wie viele Möglichkeiten gibt es, die Bücher anzuordnen, wenn die Bücher und die Stabel unterscheidbar sind?

c) Vier der 12 Bücher besitzen einen roten Umschlag, der Rest besitzt einen blauen Umschlag. Die Bücher seien nur durch die Farbe der Umschläge unterscheidbar. Wie viele Möglichkeiten gibt es, die Bücher anzuordnen, wenn die Stapel unterscheidbar sind?

Irgendwie habe ich überhaupt keine Ahnung wie ich an das Problem rangehen soll.

Bei b) hatte ich den Ansatz, dass wenn Bücher und Stapel unterscheidbar sind, müsste dies eine Variation mit Zurücklegen (jeder Stapel kann mehrmals genutzt werden) sein (?!)
Somit würde 3^12 Möglichkeiten existieren. Da jedoch kein Stapel leer sein darf muss ich noch die Möglichkeiten, dass 1 Stapel leer ist, subtrahieren.
D.h.: 3^12-3⋅1^12
aber irgendwie erscheint mir das auch nicht wirklich als richtig...
Ich wäre über jeden Tipp dankbar, wie gesagt, ich steh komplett auf dem Schlauch.


(Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.onlinemathe.de/forum/Elementare-Kombinatorik  nur hat mir dort nichts und niemand geholfen)


        
Bezug
Bücherstapeln: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Do 25.03.2010
Autor: rabilein1


> 12 Bücher sollen auf 3 Stapel verteilt werden. Kein Stapel
> soll leer bleiben.
>  
> a) Wie viele Möglichkeiten gibt es, die Bücher
> anzuordnen, wenn die Bücher und die Stapel nicht
> unterscheidbar sind?

Da würde ich die einzelnen Möglichkeiten abzählen:

1 + 1 + 10
1 + 2 + 9
1 + 3 + 8
1 + 4 + 7
1 + 5 + 6

2 + 2 + 8
2 + 3 + 7
2 + 4 + 6
2 + 5 + 5

3 + 3 + 6
3 + 4 + 5

4 + 4 + 4

Das sind also 12 Möglichkeiten.

Bezug
                
Bezug
Bücherstapeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Fr 26.03.2010
Autor: dynamitesu

nur bringt abzählen in der Prüfung keine Punkte...leider :-(

Bezug
                        
Bezug
Bücherstapeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:07 Sa 27.03.2010
Autor: Fulla

Warum denn nicht?
Du hast einen Lösungsweg und ein richtiges Ergebnis.

Wenn Abzählen vom Aufgabensteller ausgeschlossen wäre, wären es in der Aufgabe z.B. 120 Bücher und 23 Stapel...

Bezug
                                
Bezug
Bücherstapeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:53 Sa 27.03.2010
Autor: dynamitesu

Die Frage ist Klausurvorbereitung und wenn in der Klausur dann 120 Bücher und 23 Stapel kommen bin ich mit abzählen halt bissl doof dran...daher wär ne Formel gescheiter, weil wenns 120 Bücher und 23 Stapel geben würde, würde mir hier ja auch keiner abzählen empfehlen (hoff ich mal)

Bezug
                                        
Bezug
Bücherstapeln: Warum Formel ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Sa 27.03.2010
Autor: rabilein1


> daher wär ne Formel gescheiter,
> weil wenns 120 Bücher und 23 Stapel geben würde, würde
> mir hier ja auch keiner abzählen empfehlen (hoff ich mal)

Das ist klar, dass bei 120 Büchern und 23 Stapeln ein von Menschenhand ausgeführtes Abzählen zu lange dauern würde.

Aber woher weißt du denn, dass es überhaupt eine einfache Formel für dieses Problem gibt???

Computer können zwar in Bruchteilen von Sekunden korrekte Ergebnisse liefern, aber oftmals nur deshalb, weil sie wahnsinnig schnell abzählen können. Denen ist es dann egal, ob es sich um 12 Bücher und 3 Stapel handelt oder um 120 Bücher und 23 Stapel.

Wenn du also einen Abzähl-Algorithmus und ein entsprechendes Programm hast, dann sollte das auch genügen.

Der Mensch merkt doch gar nicht, ob das Ergebnis nach 0,001 Sekunden erscheint oder erst nach 0,01 Sekunden.  



Bezug
        
Bezug
Bücherstapeln: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 So 28.03.2010
Autor: Blech

Hi,

b)

[mm] $3^{12} [/mm] - [mm] {3\choose 2}*2^{12}+3$ [/mm]

[mm] $3^{12}$: [/mm] Für jedes Buch wählen wir zufällig einen Stapel aus. Allerdings können alle auf 2 (oder 1) landen, also:

[mm] $-{3\choose 2}*2^{12}$ [/mm] wählen wir 2 aus den 3 Stapeln und verteilen die Bücher nur über die.

$3$ im ersten Korrekturterm taucht jede der 3 Möglichkeiten, daß alle Bücher auf einem Stapel landen 2 mal auf, das müssen wir rückgängig machen.


a) und c) lassen sich denk ich nicht so trivial lösen. D.h. Du kannst unterschiedlich effizient abzählen, aber es wird immer auf eine Art Abzählen hinauslaufen.

Ganz besonders bei a), wo die Stapel auch nicht unterscheidbar sind. Effektiv ist es die Aufgabe: Wieviele Möglichkeiten gibt es, daß die Augensumme von 3 10-seitigen Würfeln 12 ist (jeder Stapel braucht mindestens 1 Buch). Ich wüßte keine elgante Lösung für das Augensummenproblem. Wenn Du eine findest, wäre ich daran interessiert. =)

ciao
Stefan




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de