www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - C^1-Diffeom.
C^1-Diffeom. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

C^1-Diffeom.: Tipp/Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:34 Mo 10.12.2012
Autor: Lustique

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Es seien $B=\left\{x'\in\mathbb{R}^{d-1}:|x'|<1}\right\}$ und $\mathbb{R}_+^d:=\mathbb{R}^{d-1}\times (0, \infty)$.

a) Zeigen Sie, dass

$\varphi\colon B\times (0, \infty)\to\mathbb{R}_+^d, \qquad \varphi(\xi, r)=(r\xi, r\sqrt{1-|\xi|^2})$

ein $C^1$-Diffeomorphismus ist und berechnen Sie $|\det D\varphi|$.

Hallo,
ich komme gerade leider bei der dieser Aufgabe nicht weiter. Ich habe schon gezeigt, dass $\varphi$ bijektiv ist, und die Stetigkeit ist ja klar und da gibt es nichts mehr zu zeigen (denke ich mal), aber jetzt hakt es bei mir bei der Funktionaldeterminante, da ich auch leider in Linearer Algebra noch nicht so bewandert bin.

Wenn ich dann zeigen kann, dass $|\det D\varphi|\neq 0$ und dass $\varphi'(\xi, r)$ stetig ist, dann habe ich doch schon gezeigt, dass $\varphi$ ein $C^1$-Diffeomorphismus ist, oder?

Ich habe mich dann an die Bestimmung der Funktionalmatrix gemacht und bin zu folgendem Ergebnis gekommen:

$D\varphi(\xi, r)=\begin{pmatrix}r \cdot E_{d-1} & \xi \\ \frac{-\xi_1 r}{\sqrt{1-|\xi|^2}} \cdots \frac{-\xi_{d-1} r}{\sqrt{1-|\xi|^2}} & \sqrt{1-|\xi|^2}\end{pmatrix}$

Dabei hat die oberste "Zeile" der Matrix d-1 Zeilen und die erste "Spalte" d-1 Spalten. Ich hoffe mal, so wird klar, wie ich das meine. $E_{d-1}$ soll die d-1-dimensionale Einheitsmatrix sein.

Ist die Funktionalmatrix/Jacobi-Matrix so richtig? Wie rechne ich jetzt am besten die Determinante aus? Sollte ich das Ganze nach der ersten Zeile entwickeln, oder kann ich mir das schenken, weil sich die Determinante aufgrund der Struktur irgendwie anders ausrechnen lässt (wegen der Einheitsmatrix)?

Falls ich die Determinante tatsächlich stumpf ausrechnen muss, gibt es eine Möglichkeit so etwas wie $\frac{-\xi_1 r}{\sqrt{1-|\xi|^2}} \cdots \frac{-\xi_{d-1} r}{\sqrt{1-|\xi|^2}}$ kompakter zu formulieren, da davon ja bei jedem Enwicklungsschritt eine Komponente wegfallen müsste (sollte ich nach der ersten Zeile entwickeln), oder?

Und noch eine Frage zur Stetigkeit der Ableitung: Kann ich hier einfach argumentieren, dass die einzelnen partiellen Ableitungen offensichtlich stetig sind, und damit auch die totale Ableitung, oder ist da mehr zu tun?

Ich bin wie immer dankbar für jede Hilfe, die ich bekommen kann.

        
Bezug
C^1-Diffeom.: Frage hat sich erledigt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 Di 11.12.2012
Autor: Lustique

Sollte das hier einer der Moderatoren lesen: Ich habe meine Frage selbst beantwortet. Könntet ihr die Frage vielleicht auf beantwortet stellen, oder sowas in der Art? Ich kann mir ja leider nicht selbst antworten.



Ich habe eben noch mal ein kleines Buch durchgeblättert und bin dabei auf folgenden Satz gestoßen:

Sei [mm] $\mathbf{H}:=\begin{pmatrix}\mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D}\end{pmatrix}$ [/mm] die Zerlegung einer [mm] $n\times [/mm] n$-Matrix in vier Teilmatrizen, wobei [mm] $\mathbf{A}$ [/mm] und [mm] $\mathbf{D}$ [/mm] quadratisch sind. [mm] $\mathbf{A}$ [/mm] sei invertierbar. Dann gilt:
[mm] $\det \mathbf{H} [/mm] = [mm] \det \mathbf{A} \cdot \det\left(\mathbf{D}-\mathbf{C}\mathbf{A}^{-1}\mathbf{B}\right)$.
[/mm]

Damit ging das Ganze dann recht einfach. Den Rest werde ich dann wohl alleine hinbekommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de