www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - (C1-)Diffeomorphismus
(C1-)Diffeomorphismus < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(C1-)Diffeomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:30 Mo 09.12.2013
Autor: Herbart

Hallo zusammen,

ich habe eine kurze Frage zur Notation. Bisher sind mir immer nur [mm] C^k [/mm] -Diffeomorphismen begegnet. Nun wird in einer Aufgabe von einem "Diffeomorphismus" gesprochen.
Nach Wikipedia ist "ein Diffeomorphismus eine bijektive, stetig differenzierbare Abbildung, deren Umkehrabbildung auch stetig differenzierbar ist."
Meine Frage daher: Wenn man von einem "Diffeomorphismus" spricht meint man damit immer einen [mm] C^1 [/mm] -Diffeomorphismus?

MfG Herbart

        
Bezug
(C1-)Diffeomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 10:44 Mo 09.12.2013
Autor: fred97


> Hallo zusammen,
>  
> ich habe eine kurze Frage zur Notation. Bisher sind mir
> immer nur [mm]C^k[/mm] -Diffeomorphismen begegnet. Nun wird in einer
> Aufgabe von einem "Diffeomorphismus" gesprochen.
> Nach Wikipedia ist "ein Diffeomorphismus eine bijektive,
> stetig differenzierbare Abbildung, deren Umkehrabbildung
> auch stetig differenzierbar ist."
> Meine Frage daher: Wenn man von einem "Diffeomorphismus"
> spricht meint man damit immer einen [mm]C^1[/mm] -Diffeomorphismus?

Ja

FRED

>  
> MfG Herbart


Bezug
                
Bezug
(C1-)Diffeomorphismus: Injektivität
Status: (Frage) beantwortet Status 
Datum: 11:28 Mo 09.12.2013
Autor: Herbart

Danke Fred! Noch eine kurze Frage zur Injektivität. Allein aufgrund der Definition von Injektivität halte ich es für sinnvoll, Injektivität auch für Fkt. durch [mm] f(x_1,...,x_n)=f(x_1,...,x_n) \Rightarrow (x_1,...,x_n)=(x_1,...,x_n) [/mm] zu zeigen. Bevor ich mich an den Beweis begebe, möchte ich wissen, ob dies wirklich so "sinnvoll" ist.

MfG Herbart

Bezug
                        
Bezug
(C1-)Diffeomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Mo 09.12.2013
Autor: Gonozal_IX

Hiho,

> Danke Fred! Noch eine kurze Frage zur Injektivität. Allein
> aufgrund der Definition von Injektivität halte ich es für
> sinnvoll, Injektivität auch für Fkt. durch
> [mm]f(x_1,...,x_n)=f(x_1,...,x_n) \Rightarrow (x_1,...,x_n)=(x_1,...,x_n)[/mm]

eigentlich ist da nichts zu zeigen, da obiges eine Tautologie ist.

Wenn du aber meinst, dass du Injektivität durch

[mm]f(x_1,...,x_n)=f(y_1,...,y_n) \Rightarrow (x_1,...,x_n)=(y_1,...,y_n)[/mm]

zeigen willst, dann ist das ok (wobei ich mich fragen will, wie du es sonst zeigen willst, denn so ist Injektivität ja definiert).

Gruß,
Gono.

Bezug
                                
Bezug
(C1-)Diffeomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 09.12.2013
Autor: Herbart

Tut mir Leid. Natürlich meinte ich
$ [mm] f(x_1,...,x_n)=f(y_1,...,y_n) \Rightarrow (x_1,...,x_n)=(y_1,...,y_n) [/mm] $
Vielen Dank!

MfG Herbart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de