www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Cantormenge überabzählbar
Cantormenge überabzählbar < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cantormenge überabzählbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Mo 18.01.2010
Autor: kleinsnoopy

Aufgabe
Zeigen Sie, dass die Cantormenge C überabzählbar ist.

Hallo!
Wir betrachten die Cantormenge, in der immer das mittlere Drittel "herausgewischt" wurde. (Ausgehend von dem Intervall [0,1].)
Als Idee hätte ich, dass man zeigt, dass eine bijektive Abbildung zwischen C und [0,1] gibt, da [0,1] ja bekanntermaßen überabzählbar ist.
Nur irgendwie finde ich momentan keine solche Abbildung bzw die Hinweise mit Tenärdarstellung u.ä. sind mir unverständlich.
Kennt jemand eine solche Abbilung oder hat eine Idee wie ich das zeigen könnte ?
Vielen Dank!

        
Bezug
Cantormenge überabzählbar: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Mo 18.01.2010
Autor: Leopold_Gast

Die Elemente des Cantorschen Diskontinuums sind gerade diejenigen reellen Zahlen, deren Ternärdarstellung die Ziffer 1 nicht enthält. Jetzt ordne jedem solchen Ternärbruch einen Dualbruch zu, indem du die Ziffer 0 durch 0 und die Ziffer 2 durch 1 ersetzt. Dann hast du eine Abbildung von C auf das reelle Intervall [0,1]. Sie ist "beinahe bijektiv". Es stört, daß z.B.

[mm]\frac{1}{3} = 0,022222 \ldots \text{(ternär)} \mapsto 0,011111 \ldots \text{(dual)} = \frac{1}{2}[/mm]

[mm]\frac{2}{3} = 0,200000 \ldots \text{(ternär)} \mapsto 0,100000 \ldots \text{(dual)} = \frac{1}{2}[/mm]

gilt. Aber das kann man vielleicht auch noch irgendwie in den Griff bekommen.

Bezug
        
Bezug
Cantormenge überabzählbar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Mo 18.01.2010
Autor: reverend

Hallo kleinsnoopy,

betrachte mal den einzelnen Schritt des "Herauswischens" und dann mein folgendes Bildchen. Mit was für einer Abbildung kannst Du das fehlende Teil wieder füllen?

[Dateianhang nicht öffentlich]

Etwas Bedenken erfordert noch die Tatsache, dass aus den vier schwarzen Linien oben (die Abschlüsse der beiden Intervalle) durch die Abbildung ja nur noch drei werden dürfen. Oder? Denk mal drüber nach. Ist Bijektivität wirklich nötig?

Jedenfalls kannst du so eine rekursive Abbildung konstruieren, die Dir zeigt, dass die Cantormenge mindestens so mächtig ist ist wie [0,1] und damit wie [mm] \IR. [/mm]
Das sollte doch schon weiterhelfen. ;-)

lg
reverend

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de