www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Cantorsche Tupelfunktion
Cantorsche Tupelfunktion < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cantorsche Tupelfunktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:54 Fr 16.10.2009
Autor: stefan00

Aufgabe
Berechnen Sie [mm] $\pi_2^{(3)}(453)$ [/mm]

Hallo,

ich habe noch nicht so ganz verstanden, wie ich die Umkehrfunktion der Cantorschen Tupelfunktion von [mm] $\pi^{(3)}$ [/mm] berechnen kann. Bei [mm] $\pi^{(2)}$ [/mm] ist das ja noch möglich, da man ja quasi ein 2-dimensionales Koordinatensystem hat, in dem man dann ein [mm] $f(v)\le [/mm] z$ finden kann, welches maximal ist und somit auf x und y kommt und dann auf [mm] $\pi(x,y)=z$. [/mm]

Wie mache ich das aber für [mm] $\pi^{(3)}$? [/mm]

Vielen Dank für die Hilfe.

Gruß, Stefan.

        
Bezug
Cantorsche Tupelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Fr 16.10.2009
Autor: fred97



[]Hier wird alles sehr schön erklärt.


FRED

Bezug
                
Bezug
Cantorsche Tupelfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Fr 16.10.2009
Autor: stefan00


> []Hier
> wird alles sehr schön erklärt.

ja, das ist eine schöne Erklärung für $k=2$, aber hier muss ja die Umkehrfunktion für $k=3$ gezeigt werden, d.h. ich muss offensichtlich die Berechnung zweimal hintereinander ausführen oder verschachtelt, aber wie? Ich komme auf keinen Ansatz.

Gruß, Stefan.

Bezug
                        
Bezug
Cantorsche Tupelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Fr 16.10.2009
Autor: abakus


> > []Hier
> > wird alles sehr schön erklärt.
>  ja, das ist eine schöne Erklärung für [mm]k=2[/mm], aber hier
> muss ja die Umkehrfunktion für [mm]k=3[/mm] gezeigt werden, d.h.
> ich muss offensichtlich die Berechnung zweimal
> hintereinander ausführen oder verschachtelt, aber wie? Ich
> komme auf keinen Ansatz.
>  
> Gruß, Stefan.

Hallo,
Denke dir ein x-y-z-Koordinatensystem im ersten Oktanten (also alle drei Koordinaten nichtnegativ).
jetzt lässt du diesen Raum von unendlich vielen parallelen Ebenen schneiden.
[mm] E_1 [/mm] geht dabei durch die Punkte (1;0;0), (0;1;0) und (0;0;1).
[mm] E_2 [/mm] geht dabei durch die Punkte (2;0;0), (0;2;0) und (0;0;2).
[mm] E_3 [/mm] geht dabei durch die Punkte (3;0;0), (0;3;0) und (0;0;3) usw.
(kann man auch beschreiben durch x+y+z=1 ; x+y+z=2 usw.)
Jetzt kannst du - beginnend mit (0,0,0) - alle Punkte von Ebene zu Ebene abzählen.
Auf den Koordinatenursprung folgen 3 Punkte in Ebene 1, dann 6 Punkte in [mm] E_2, [/mm] dann 10 Punkte in [mm] E_3 [/mm] usw.
Die Anzahlen der Punkte pro Ebene sind übrigens gerade die "Dreieckszahlen".
Gruß Abakus






Bezug
                                
Bezug
Cantorsche Tupelfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Fr 16.10.2009
Autor: Niladhoc

Hallo,

Abakus, ich glaube du hast die Tupel wie (1,2,3) ausgelassen, in drei Dimensionen muss man zuerst die [mm] \pi [/mm] -Funktion auf das zweidimensionale Tupel hintere Tupel anwenden, sodass zuerst [mm] \pi((2,3)) [/mm] berechnet wird. Dann fasst man das dreidimensionale Tupel wiederum als 2-Tupel auf und berechnet [mm] \pi((1,\pi(2,3))) [/mm] (Das sind unschöne explizite Formeln). Die Umkehrfunktion für ein (n+1)-Tupel ist somit die n-fache Anwendung der Umkehrfunktion für ein 2-Tupel.

lg

Bezug
                                        
Bezug
Cantorsche Tupelfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:15 Fr 16.10.2009
Autor: abakus


> Hallo,
>  
> Abakus, ich glaube du hast die Tupel wie (1,2,3)
> ausgelassen,

Habe ich nicht. Es erscheint in der Ebene [mm] E_6. [/mm]
Wenn man die Punkte "von oben nach unten" und in jeder Höhe "von links nach rechts" durchzählt,
kommen in dieser Ebene der Reihe nach (die Klammern und Kommas lasse ich mal weg)
006
105, 015
204, 114, 024
303, 213, [mm] \red{123}, [/mm] 033

Gruß Abakus


> in drei Dimensionen muss man zuerst die [mm]\pi[/mm]
> -Funktion auf das zweidimensionale Tupel hintere Tupel
> anwenden, sodass zuerst [mm]\pi((2,3))[/mm] berechnet wird. Dann
> fasst man das dreidimensionale Tupel wiederum als 2-Tupel
> auf und berechnet [mm]\pi((1,\pi(2,3)))[/mm] (Das sind unschöne
> explizite Formeln). Die Umkehrfunktion für ein (n+1)-Tupel
> ist somit die n-fache Anwendung der Unkehrfunktion für ein
> 2-Tupel.
>  
> lg  


Bezug
                                        
Bezug
Cantorsche Tupelfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Fr 16.10.2009
Autor: Niladhoc

Hallo,

ich habe gesehen: konventionsmäßig wird ein Tupel von vorne nach hinten kodiert. Also heißt es: [mm] \pi^3(1,2,3)=\pi(\pi(1,2),3) [/mm]

lg

Bezug
                                
Bezug
Cantorsche Tupelfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Sa 17.10.2009
Autor: stefan00

Hallo abakus,
>  Jetzt kannst du - beginnend mit (0,0,0) - alle Punkte von
> Ebene zu Ebene abzählen.
>  Auf den Koordinatenursprung folgen 3 Punkte in Ebene 1,
> dann 6 Punkte in [mm]E_2,[/mm] dann 10 Punkte in [mm]E_3[/mm] usw.

das ist eine interessante Vorstellung mit dem dreidimensionalen Raum. Aber wie zähle ich das nun genau in Tupel-Schreibweise und wie mache ich das vor allem für höhere "Dimensionen" also $k>3$, da habe ich ja keine geometrische Vorstellung. Gibt es eine Art Entwicklungsformel für die Umkehrfunktion, so ähnlich wie im 2-Tupel? Ich komme leider noch nicht dahinter, wie ich nun mittels eines Bilds oder einer Formel auf [mm] $\pi_2^{(3)}(453)$ [/mm] komme oder zumindest mal auf die drei Tupel [mm] $\pi^{(3)}(453)=(x,y,z)$. [/mm]

Vielen Dank nochmals für die Hilfe.

Gruß, Stefan.

Bezug
                                        
Bezug
Cantorsche Tupelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:00 So 18.10.2009
Autor: abakus


> Hallo abakus,
>  >  Jetzt kannst du - beginnend mit (0,0,0) - alle Punkte
> von
> > Ebene zu Ebene abzählen.
>  >  Auf den Koordinatenursprung folgen 3 Punkte in Ebene 1,
> > dann 6 Punkte in [mm]E_2,[/mm] dann 10 Punkte in [mm]E_3[/mm] usw.
> das ist eine interessante Vorstellung mit dem
> dreidimensionalen Raum. Aber wie zähle ich das nun genau
> in Tupel-Schreibweise und wie mache ich das vor allem für
> höhere "Dimensionen" also [mm]k>3[/mm], da habe ich ja keine
> geometrische Vorstellung. Gibt es eine Art
> Entwicklungsformel für die Umkehrfunktion, so ähnlich wie
> im 2-Tupel? Ich komme leider noch nicht dahinter, wie ich
> nun mittels eines Bilds oder einer Formel auf
> [mm]\pi_2^{(3)}(453)[/mm] komme oder zumindest mal auf die drei
> Tupel [mm]\pi^{(3)}(453)=(x,y,z)[/mm].

Hallo,
meine Ebenen lassen sich durch die Gleichungen x+y+z=0 (enthält nur (0,0,0)), x+y+z=1,
x+y+z=2 usw. beschreiben.  Das kann man sich in höheren Dimensionen zwar nicht nehr räumlich vorstellen, aber trotzdem mit den entsprechenden Formeln wie [mm] x_1+x_2+x_3+x_4=1, x_1+x_2+x_3+x_4=2 [/mm] usw. weiterarbeiten.
Zu meinem Beispiel mit n=3:
Für die Summe aller Dreieckszahlen [mm] 1+3+6+10+15+...+D_n [/mm] gibt es eine Summenformel. Wenn sich dein gesuchtes Element also in einer bestimmten Ebene befinden, kannst du die Anzahl aller Gitterpunkte in den Vorgängerebenen auf einen Schlag bestimmen und musst nur noch in der aktuellen Ebene abzählen.
Gruß Abakus

>  
> Vielen Dank nochmals für die Hilfe.
>  
> Gruß, Stefan.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de