www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Cauchy-Folge
Cauchy-Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy-Folge: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:23 Di 17.02.2009
Autor: Baeni

Aufgabe
Die Folge [mm] (x_i)_{i\in \mathbb{N}} [/mm] = [mm] (i)_{i\in \mathbb{N}} [/mm] ist keine Cauchy-Folge:
Sei [mm] \varepsilon=1/2 [/mm] gewählt, und N eine beliebige natürliche Zahl. Dann wähle m = N + 1 und n = m + 1. Es ist dann
[mm] d\left(x_n, x_m\right) [/mm] = |n-m| = 1 > [mm] \varepsilon, [/mm]
die Bedingung einer Cauchy-Folge ist also nicht erfüllt

Dumme Frage:
Wenn man bei diesem Beispiel das [mm] \varepsilon [/mm] = 2 wählen würde, dann wäre doch die Bedingung für die Cauchy-Folge erfüllt, oder?
Das [mm] \varepsilon [/mm] kann man doch beliebig wählen. Woher weiß man dann, wie man es wählen soll, denn je nachdem welche Auswahl man trifft, varriert das Ergebnis?!

Ich danke schonmal für die Aufklärung.



        
Bezug
Cauchy-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Di 17.02.2009
Autor: Merle23

Bei einer Cauchy-Folge gilt es für -jedes- [mm] \epsilon. [/mm]

edit: Auch mit [mm] \epsilon [/mm] auf zwei gesetzt haut es nicht hin. Nimm' n=m+3.

Bezug
        
Bezug
Cauchy-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Mi 18.02.2009
Autor: MaRaQ

Hallo Baeni,

da hat Merle absolut recht.

> "Das [mm] \epsilon [/mm] kann man doch beliebig wählen"

Das ist nicht der originale Wortlaut der Bedingung.
Man muss es beliebig wählen können, wobei das Kriterium immer erfüllt bleibt.
Ergo: "Für alle [mm] \epsilon [/mm] > 0" muss es gelten.

Das beliebig hast du wahrscheinlich aus diesem Kontext schon einmal gehört:

"Sei [mm] \epsilon [/mm] > 0 beliebig gewählt"

Das bedeutet allerdings nur: Egal welches wir wählen, es stimmt immer - oder anders formuliert: Für alle [mm] \epsilon [/mm] > 0 gilt...

Gruß, Maraq

Bezug
                
Bezug
Cauchy-Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:15 Mi 18.02.2009
Autor: Baeni

Das heißt dann ja auch, dass ich meine m,n [mm] \ge n_0 [/mm] dem frei gewählten [mm] \varepsilon [/mm] anpassen muss, oder?

Dann habe ich´s kapiert [hoffentlich :)]

Bezug
                        
Bezug
Cauchy-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 Mi 18.02.2009
Autor: MaRaQ


> Das heißt dann ja auch, dass ich meine m,n [mm]\ge n_0[/mm] dem frei
> gewählten [mm]\varepsilon[/mm] anpassen muss, oder?
>  
> Dann habe ich´s kapiert [hoffentlich :)]

[ok]

Ja. Man sucht sich ein passendes [mm] n_0 [/mm] so dass für alle m,n [mm] \ge n_0 [/mm] die Bedingung erfüllt ist. ;-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de