www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Cauchy-Folge
Cauchy-Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy-Folge: Erklärung
Status: (Frage) beantwortet Status 
Datum: 22:19 Sa 01.12.2012
Autor: arraneo

Hey,

Aufgabe: (X,d) metrischer Raum und [mm] (x_n)_{n\in N} [/mm] sowie [mm] (y_n)_{n\in N} [/mm] Cauchy-Folgen in X.

Man zeige: Dann ist [mm] (d(x_n,y_n))_{n\in N} [/mm] eine Cauchy-Folge in R.

Ich verstehe, ehrlich gesagt, die Aufgabe nicht wirklich. Die Folge der Abstände sollte also in R konvergieren.

Ich denke mir, dass diese Folge gegen d(a,b) konvergieren würde, wobei [mm] x_n\to [/mm] a und [mm] y_n\to [/mm] b.

Oder?

lg.

arraneo

        
Bezug
Cauchy-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Sa 01.12.2012
Autor: Marcel

Hallo,

> Hey,
>
> Aufgabe: (X,d) metrischer Raum und [mm](x_n)_{n\in N}[/mm] sowie
> [mm](y_n)_{n\in N}[/mm] Cauchy-Folgen in X.
>
> Man zeige: Dann ist [mm](d(x_n,y_n))_{n\in N}[/mm] eine Cauchy-Folge
> in R.
>
> Ich verstehe, ehrlich gesagt, die Aufgabe nicht wirklich.
> Die Folge der Abstände sollte also in R konvergieren.

ja, weil [mm] $\IR$ [/mm] vollständig ist. Aber prinzipiell wäre das nur eine
Umformulierung der Aufgabe hier.

> Ich denke mir, dass diese Folge gegen d(a,b) konvergieren
> würde, wobei [mm]x_n\to[/mm] a und [mm]y_n\to[/mm] b.
>
> Oder?

Nein, denn weder [mm] $(x_n)$ [/mm] noch [mm] $(y_n)$ [/mm] muss konvergent sein. (Das wäre
dann der Fall, wenn [mm] $(X,d)\,$ [/mm] ein VOLLSTÄNDIGER metrischer Raum wäre;
aber das steht ja nirgends in den Voraussetzungen!)

Voraussetzung ist:
Für alle [mm] $\epsilon [/mm] > 0$ gilt:
1. Es existiert ein [mm] $N_1$ [/mm] so, dass [mm] $d(x_k,x_m) [/mm] < [mm] \epsilon$ [/mm] für alle $k,m [mm] \ge N_1\,.$ [/mm]
2. Es existiert ein [mm] $N_2$ [/mm] so, dass [mm] $d(x_k,x_m) [/mm] < [mm] \epsilon$ [/mm] für alle $k,m [mm] \ge N_2\,.$ [/mm]

Zu zeigen ist:
Ist [mm] $\varepsilon [/mm] > 0$ beliebig, aber fest, vorgegeben, so existiert ein
[mm] $N\,$ [/mm] so, dass für alle $k,m [mm] \ge [/mm] N$ gilt
[mm] $$|d(x_k,y_k)-d(x_m,y_m)| [/mm] < [mm] \epsilon\,.$$ [/mm]

Tipp:
Beweise zunächst die sogenannte Vierecksungleichung, falls unbekannt:
$$|d(x,y)-d(u,v)| [mm] \le d(x,u)+d(y,v)\,.$$ [/mm]

Danach denke drüber nach, wie Du damit 1. und 2. ins Spiel bringen
kannst.

Gruß,
  Marcel

Bezug
                
Bezug
Cauchy-Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:04 So 02.12.2012
Autor: arraneo

Hey Marcel,

Sei [mm] \varepsilon>0 [/mm] bel. aber fest, dann gilt aus der Voraussetzung :

[mm] \exists N_1\in [/mm] N: [mm] d(x_k,x_m)<\bruch{\varepsilon}{2} [/mm] , [mm] \forall k,m\ge N_1 [/mm]

[mm] \exists N_2\in [/mm] N: [mm] d(y_k,y_m)<\bruch{\varepsilon}{2} [/mm] , [mm] \forall k,m\ge N_2 [/mm]

Weiterhin gilt:

[mm] d(x_k,y_k)\le d(x_k,x_m)+d(x_m,y_k)\le d(x_k,x_m)+d(x_m,y_m)+d(y_m,y_k) [/mm]  (Dreiecksungleichung)

[mm] \gdw d(x_k,y_k)-d(x_m,y_m)\le d(x_k,x_m)+d(y_k,y_m) [/mm]   (1)

Außerdem, gilt:

[mm] d(x_m,y_m)\le d(x_m,x_k)+d(x_k,y_m)\le d(x_m,x_k)+d(x_k,y_k)+d(y_k,y_m) [/mm]    (Dreiecksungleichung)

[mm] \gdw d(x_m,y_m)-d(x_k,y_k)\le d(x_k,y_k)+d(y_k,y_m) [/mm]    (2)

Per Definition gilt: d(x,y)=d(y,x) und mit (1) und (2) gilt insgesamt:

[mm] |d(x_k,y_k)-d(x_m,y_m)|\le d(x_m,x_k)+d(y_k,y_m)=^{voraus.}\bruch{\varepsilon}{2}+\bruch{\varepsilon}{2}=\varepsilon [/mm]

[mm] \Rightarrow^{def} [/mm] Die Folge [mm] (d(x_n,y_n))_{n\in N} [/mm] ist eine Cauchy-Folge .

qed. oder? ^^

lg.

arraneo

Bezug
                        
Bezug
Cauchy-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 So 02.12.2012
Autor: fred97


> Hey Marcel,
>
> Sei [mm]\varepsilon>0[/mm] bel. aber fest, dann gilt aus der
> Voraussetzung :
>
> [mm]\exists N_1\in[/mm] N: [mm]d(x_k,x_m)<\bruch{\varepsilon}{2}[/mm] ,
> [mm]\forall k,m\ge N_1[/mm]
>  
> [mm]\exists N_2\in[/mm] N: [mm]d(y_k,y_m)<\bruch{\varepsilon}{2}[/mm] ,
> [mm]\forall k,m\ge N_2[/mm]
>  
> Weiterhin gilt:
>
> [mm]d(x_k,y_k)\le d(x_k,x_m)+d(x_m,y_k)\le d(x_k,x_m)+d(x_m,y_m)+d(y_m,y_k)[/mm]
>  (Dreiecksungleichung)
>  
> [mm]\gdw d(x_k,y_k)-d(x_m,y_m)\le d(x_k,x_m)+d(y_k,y_m)[/mm]   (1)
>
> Außerdem, gilt:
>
> [mm]d(x_m,y_m)\le d(x_m,x_k)+d(x_k,y_m)\le d(x_m,x_k)+d(x_k,y_k)+d(y_k,y_m)[/mm]
>    (Dreiecksungleichung)
>  
> [mm]\gdw d(x_m,y_m)-d(x_k,y_k)\le d(x_k,y_k)+d(y_k,y_m)[/mm]    (2)
>
> Per Definition gilt: d(x,y)=d(y,x) und mit (1) und (2) gilt
> insgesamt:
>
> [mm]|d(x_k,y_k)-d(x_m,y_m)|\le d(x_m,x_k)+d(y_k,y_m)=^{voraus.}\bruch{\varepsilon}{2}+\bruch{\varepsilon}{2}=\varepsilon[/mm]
>  
> [mm]\Rightarrow^{def}[/mm] Die Folge [mm](d(x_n,y_n))_{n\in N}[/mm] ist eine
> Cauchy-Folge .
>
> qed. oder? ^^

Sieht gut aus.

FRED

>  
> lg.
>
> arraneo


Bezug
                                
Bezug
Cauchy-Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:51 So 02.12.2012
Autor: arraneo

Hey Fred!

Toll, das hört sich immer sehr gut an. Danke ^^

lg.

arraneo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de