www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Cauchy Folgen im ang. Körper
Cauchy Folgen im ang. Körper < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy Folgen im ang. Körper: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:10 Sa 29.06.2013
Autor: Killuah

Aufgabe
Zeigen sie für einen beliebigen archimedisch angeordneten Körper k:

Sind [mm] (a_{n})_{n} [/mm] und [mm] (b_{n})_{n} [/mm] Cauchy-Folgen in K, dann ist auch [mm] (a_{n}+b_{n})_{n} [/mm] eine Cauchy-Folge in K.

Ich habe einen Lösungsweg. Ich möchte nur nochmal fragen, ob dieser wirklich richtig ist, da mit Abschätzungen etc. noch einige Probleme bereiten:

Definition Cauchy:
    [mm] \forall \varepsilon [/mm] > 0 [mm] \exists n_{0} \forall [/mm] n,m [mm] \ge n_{0}: |a_{n} [/mm] - [mm] a_{m}| [/mm] < [mm] \varepsilon [/mm]

Damit kann ich dann ja annehmen, dass es ein [mm] n_{0} [/mm] gibt, sodass die Cauchy Bedingung für beide Folgen einzelnd erfüllt ist. (Ich nehme einfach das größere [mm] n_{0}.) [/mm]

setze [mm] \bruch{\varepsilon}{2} [/mm] = [mm] |f_{n} [/mm] - [mm] f_{m}| [/mm]  (hier nur f als Folgenglieder genommen, damit es "allgemein" bleibt)

| [mm] (a_{n}+b_{n}) [/mm] - [mm] (a_{m}+b_{m})| [/mm] =
[mm] |a_{n}+b_{n}-a_{m}-b_{m}|= [/mm]
[mm] |a_{n}-a_{m}+b_{n}-b_{m}| \le [/mm] (mit der Dreiecksungleichung)
[mm] |a_{n}-a_{m}|+|b_{n}-b_{m}|= [/mm]
[mm] \bruch{\varepsilon}{2} [/mm] + [mm] \bruch{\varepsilon}{2} [/mm] =
[mm] 2*\bruch{\varepsilon}{2} [/mm] = [mm] \varepsilon [/mm]

Damit bin ich fertig, oder? ich habe gezeit, dass ich zwei Cauchy Folgen in dem Körper nehmen kann, sie addieren kann und sie immernoch konvergieren.
Ich bin mir nämlich nicht ganz sicher, da mir ja ein "echt kleiner" in der Ungleichungskette fehlt...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Cauchy Folgen im ang. Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Sa 29.06.2013
Autor: leduart

Hallo
richtig, aber das vorletzte = ist ein < Zeichen nach Vors.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de