www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Cauchysche Integralform
Cauchysche Integralform < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchysche Integralform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 Di 13.12.2011
Autor: katrin10

Aufgabe
Bestimme das Wegintegral [mm] \bruch{1}{2*\pi*i}\integral_{|\gamma|=1}{\bruch{1/x}{x-z} dx}. [/mm] Kann man die Cauchysche Integralformel auch anwenden, falls die Holomorphie im Inneren nicht gegeben ist?

Hallo,

bei dem zu berechnenden Integral habe ich mir verschiedene Fälle angeguckt und das Integral gelöst. Nur bei |z|<1 bin ich mir nicht ganz sicher. Das Integral hat ja für diesen Fall zwei Singularitäten. Deshalb würde ich den Weg (Kreis um 0 mit Radius 1) in zwei Wege unterteilen, sodass ich zwei Integrale habe, allerdings sind dann die beiden Wege keine Kreise mehr, sodass ich die Cauchysche Integralformel nicht anwenden kann.

Katrin

        
Bezug
Cauchysche Integralform: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Mi 14.12.2011
Autor: rainerS

Hallo Katrin!

> Bestimme das Wegintegral
> [mm]\bruch{1}{2*\pi*i}\integral_{|\gamma|=1}{\bruch{1/x}{x-z} dx}.[/mm]
> Kann man die Cauchysche Integralformel auch anwenden, falls
> die Holomorphie im Inneren nicht gegeben ist?
>  Hallo,
>
> bei dem zu berechnenden Integral habe ich mir verschiedene
> Fälle angeguckt und das Integral gelöst. Nur bei |z|<1
> bin ich mir nicht ganz sicher. Das Integral hat ja für
> diesen Fall zwei Singularitäten. Deshalb würde ich den
> Weg (Kreis um 0 mit Radius 1) in zwei Wege unterteilen,
> sodass ich zwei Integrale habe, allerdings sind dann die
> beiden Wege keine Kreise mehr, sodass ich die Cauchysche
> Integralformel nicht anwenden kann.

Die Cauchysche Integralformel gilt auch für nicht kreisförmige Wege.

Eine andere Methode: Forme den Integranden durch Partialbruchzerlegung um:

[mm] \bruch{1/x}{x-z} = \bruch{A}{x} + \bruch{B}{x-z} [/mm] ,

dann kannst du jedes der beiden Einzelintegrale mit der Integralformel berechnen.

  Viele Grüße
    Rainer


Bezug
                
Bezug
Cauchysche Integralform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Mi 14.12.2011
Autor: katrin10

Vielen Dank für den Tipp.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de