www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Cesaro Limes
Cesaro Limes < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cesaro Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Do 21.11.2013
Autor: Fry

Aufgabe
Sei [mm](X_n)_n[/mm] eine Folge von reellen Zufallsvariablen mit
[mm]\lim_{n\to\infty}X_n=c[/mm] [mm]P[/mm]-fast sicher mit [mm]c\in\mathbb R[/mm]. Dann gilt:

[mm]\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_i=c[/mm] [mm]P[/mm]-fast sicher



Hallo zusammen,

ich hab die Aussage im Internet gefunden und frage mich gerade, wie man das
wohl beweisen könnte. Für reelle Zahlen/deterministische Funktionen gilt die Aussage ja so: http://de.wikipedia.org/wiki/Cauchyscher_Grenzwertsatz

Leider kann man die Aussage ja nicht mithilfe Continious Mapping Theorem
mit dem Zusatz "P-fast sicher" versehen, da die Summe ja nicht (im Limes)
aus endlich vielen Summanden besteht. Komme ansonsten auch nicht weiter.

Hat jemand eine Idee?

Liebe Grüße
Christian

        
Bezug
Cesaro Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 Do 21.11.2013
Autor: Gonozal_IX

Hiho,

was spricht dagegen, dass so zu schreiben?

[mm] $\lim_{n\to\infty} X_n [/mm] = c$ [mm] \IP [/mm] - fast sicher

[mm] $\gdw \lim_{n\to\infty} X_n(\omega) [/mm] = c$ für fast alle [mm] $\omega \in \Omega$ [/mm]

Nun hast du nur noch reelle Zahlenfolgen und damit:

[mm] $\Rightarrow \lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_i(\omega)=c [/mm] $ für fast alle [mm] $\omega \in \Omega$ [/mm]

[mm] $\gdw \lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_i=c [/mm] $ [mm] \IP [/mm] fast sicher.

Gruß,
Gono.

Bezug
                
Bezug
Cesaro Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:31 Do 21.11.2013
Autor: Fry

Hey Gono,

danke für deine Antwort!
Verstehe ich das richtig, dass also die Aussage hieraus folgt:

(1)   [mm]1=P(\lim_{n\to\infty}X_n=c)\le P(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_n=c)[/mm]

bzw aus


(2)

 [mm]\lim_{n\to\infty} X_n(\omega) = c[/mm]  für alle [mm]\omega\in N[/mm] (wobei N so, dass[mm]P(N^c)=0[/mm])

 [mm]\Rightarrow \lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_i(\omega)=c[/mm]  für alle [mm]\omega\in N[/mm]  ?


Ist beides richtig?

LG
Christian

Bezug
                        
Bezug
Cesaro Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 So 24.11.2013
Autor: Gonozal_IX

Hiho,

>  Verstehe ich das richtig, dass also die Aussage hieraus folgt:
>  
> (1)   [mm]1=P(\lim_{n\to\infty}X_n=c)\le P(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_n=c)[/mm]

Wie begründest du denn das [mm] $\le$? [/mm] Das ist doch gerade erst das, was du zeigen möchtest, nämlich das gilt:

[mm] $\left\{\lim_{n\to\infty}X_n=c\right\}\subseteq\left\{\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_n=c\right\}$ [/mm]


> bzw aus
>  
>
> (2)
>  
>  [mm]\lim_{n\to\infty} X_n(\omega) = c[/mm]  für alle [mm]\omega\in N[/mm] (wobei N so, dass[mm]P(N^c)=0[/mm])

Ja, sofern die Sigma-Algebra vollständig ist. Schreibe lieber:

für alle [mm]\omega\in \overline{\Omega}[/mm] mit  [mm] $P(\overline{\Omega}) [/mm] = 1$

>  
>  [mm]\Rightarrow \lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_i(\omega)=c[/mm] 
> für alle [mm]\omega\in N[/mm]  ?
>  
>
> Ist beides richtig?

Generell ja. Allerdings ist (1) kein Beweis, sondern verwendet ja bereits das, was du zeigen willst.
Weiterhin kannst du aus $P(A) [mm] \le [/mm] P(B)$ ja nicht $A [mm] \subseteq [/mm] B$ folgern (rein formal).

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de