www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Chachy Prinzipal Wert
Chachy Prinzipal Wert < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Chachy Prinzipal Wert: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:04 Fr 14.12.2007
Autor: dk_bl71

Aufgabe
Ist das bestimmte Integral [mm] \integral_{0}^{\infty}\frac{x^{a}}{{x^{2}-\omega^{2}}}dx [/mm] komplex?
Es gilt hier:
  [mm] \omega [/mm] > 0 und 0 < a < 1

Liebe Leute,
ich habe diese Frage bzgl. des obigen Integrals. Der gesunde Menschenverstand sagt mir, dass dieses bestimmte Integral nur einen rellen Wert annehmen kann, da die Funktion nicht komplex ist und über die positive relle Achse integriert wird. Maple liefert mir aber einen komplexen Wert. Macht Maple da einen Fehler. Oder kann der Wert tatsächlich komplex werden? Ich habe gelesen, dass man bei solchen Integralen mit Polstellen als Ausweg in der komplexen Ebene integriert (Stichwort: Chauchy Principle Value. Habe das im Detail aber nicht verstanden).

Verwirrt,
Euer Dieter

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Chachy Prinzipal Wert: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Sa 22.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Chachy Prinzipal Wert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Sa 22.12.2007
Autor: haeb0001

Hallo Dieter,

schau bitte mal unter "Cauchy'scher Hauptwert" in ein Lehrbuch oder zu Wikipedia.

Dein Integral existiert im klassischen Sinn nicht, der Integrand hat an der Stelle x= omega einen Pol, über den man nicht integrieren kann. Der Pol (erster Ordnung) weist aber einen Vorzeichenwechsel auf, man kann den Cauchy'schen Hauptwert ermitteln. Dies ist offenbar für Maple ein nicht handhabbares Problem.

Gruß haeb0001.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de