www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Chaos-Spiel
Chaos-Spiel < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Chaos-Spiel: WICHTIGE FRAGE!!!!
Status: (Frage) beantwortet Status 
Datum: 20:59 Sa 28.05.2005
Autor: grinzprinz

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[]http://www.uni-protokolle.de/foren/viewtopic.php?t=26110
http://www.matheboard.de/thread.php?threadid=17722

Hey Leute.

Ich brauche gaaaanz dringend Hilfe für unser Mathe-Projekt. Mein Thema dabei ist das Chaos-Spiel. Ich weiß wie man des Spiel simuliert und das am Ende eine Sierpinskie-Fläche rauskommt. Meine Frage ist jetzt, warum kommt gerade eine Sierpinski-Fläche dabei raus und nicht etwas anderes??? Ich habe auch bereits rausgefunden, dass man durch eine "Regeländerung" andere Fraktale erzeugen kann.

Würd mich über eine schnelle Antwort, Links o.Ä. freuen, MFG Henrik

P.S. Also, das Chaos-Spiel funktioniert folgendermaßen:
Zeichne ein gleiseitiges Dreieck. Benenne die Ecken wie folgt: oben T links L und rechts R
Suche dir einen zufälligen Startpunkt innerhalb des Dreiecks. Würfel nun. Bei 1,2 makiere den Punkt in der Mitte zwischen dem Startpunkt und T, bei 3,4 den Punkt in der Mitte zwischen Startpunkt und R und bei 5,6 den Punkt in der Mitte zwischen Startpunkt und L. Jetzt wird der Vorgang ständig wiederholt. Dabei ist natürlich nicht immer vom Startpunkt auszugehen, sondern vom letztgemachten Punkt.

        
Bezug
Chaos-Spiel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:13 Sa 28.05.2005
Autor: Marc

Hallo GrinzPrinz,

[willkommenmr]

> Ich brauche gaaaanz dringend Hilfe für unser Mathe-Projekt.
> Mein Thema dabei ist das Chaos-Spiel. Ich weiß wie man des
> Spiel simuliert und das am Ende eine Sierpinskie-Fläche
> rauskommt.

Kannst du uns zufällig noch mehr Informationen zu diesem Spiel geben, wie z.B. eine Internet-Seite mit den Spielregeln?

So können dir ja nur Leute anworten, die das Spiel kennen (ich leider nicht).

Viele Grüße,
Marc

Bezug
        
Bezug
Chaos-Spiel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:40 Mo 30.05.2005
Autor: Marc

Hallo nochmal Grinzprinz!

> Ich brauche gaaaanz dringend Hilfe für unser Mathe-Projekt.
> Mein Thema dabei ist das Chaos-Spiel. Ich weiß wie man des
> Spiel simuliert und das am Ende eine Sierpinskie-Fläche
> rauskommt. Meine Frage ist jetzt, warum kommt gerade eine
> Sierpinski-Fläche dabei raus und nicht etwas anderes??? Ich
> habe auch bereits rausgefunden, dass man durch eine
> "Regeländerung" andere Fraktale erzeugen kann.
>
> Würd mich über eine schnelle Antwort, Links o.Ä. freuen,
> MFG Henrik
>  
> P.S. Also, das Chaos-Spiel funktioniert folgendermaßen:
>  Zeichne ein gleiseitiges Dreieck. Benenne die Ecken wie
> folgt: oben T links L und rechts R
>  Suche dir einen zufälligen Startpunkt innerhalb des
> Dreiecks. Würfel nun. Bei 1,2 makiere den Punkt in der
> Mitte zwischen dem Startpunkt und T, bei 3,4 den Punkt in
> der Mitte zwischen Startpunkt und R und bei 5,6 den Punkt
> in der Mitte zwischen Startpunkt und L. Jetzt wird der
> Vorgang ständig wiederholt. Dabei ist natürlich nicht immer
> vom Startpunkt auszugehen, sondern vom letztgemachten
> Punkt.

Okay, danke für die Beschreibung. Das ist ja dann die gleiche Vorgehensweise wie bei []Wikipedia (dort ist leider auch (noch) keine Herleitung).

Ich habe die Behauptung nun auch nicht detailiert bewiesen, aber ich denke, dass es mit folgenden Feststellungen gehen müßte:

a) Das "Spiel" liefert natürlich nicht die exakte Sierpinski-Figur, die ersten paar Punkte liegen bei "ungünstiger" Wahl des Startpunktes deutlich ausserhalb der Sierpinski-Punktemenge (damit meine ich nicht ausserhalb des Sierpinski-Dreiecks, sondern ein Punkt innerhalb des Dreiecks, der aber nicht zu Sierpinski-Punktemenge gehört).
b) Eine "günstige" Wahl eines Startpunktes dürfte Punkt der Sierpinski-Menge sein; dann liegt auch der folgende Punkt exakt im Sierpinski-Dreieck.

Wegen dieser Feststellungen würde ich nun noch versuchen, folgendes zu beweisen:

c) Für den Fall a) konvergiert die Punktefolge gegen einen Sierpinski-Punkt. Das würde nämlich bedeuten, dass wir bereits nach ein paar Iterationen "ganz nah" an einem Sierpinski-Punkt sind, und im Folgenden dann zwar nicht mehr das exakte Sierpinski-Dreieck erhalten, aber doch eines, dass nur "ganz wenig davon abweicht".

d) Bleibt noch zu zeigen, dass man durch diese Iteration alle Punkte des Dreiecks "trifft". Wegen c) dürfte es reichen, diese Behauptung nur für den Fall zu zeigen, dass man mit einem Sierpinski-Punkt gestartet ist. Vielleicht kann man ja zeigen, dass sich die Punktefolge nie wiederholt (da bin ich mir aber nicht so sicher). Falls sie sich doch wiederholt, könnte man versuchen zu zeigen, dass man mit einer bestimmten Iterationsfolge alle Punkte der ersten Sierpinski-Iteration erreichen kann (also das erste Dreieck innerhalb des Start-Dreiecks). Dann nämlich hat man für die drei "äußeren" Dreiecke wieder ein neues Chaos-Spiel! Oh, dieses letzte Argument klingt sehr vielversprechend ;-)

Viel Erfolg,
Marc

Bezug
        
Bezug
Chaos-Spiel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:54 Mo 30.05.2005
Autor: Sigrid

Hallo Hendrik

Eine sehr ausführliche Darstellung des Chaos-Spiels findest du in dem Buch
Bausteine des Chaos - Fraktale
von Heinz.Otto Pleitgen, Hartmut Jürgens und Dietmar Saupe
erschienen im Klett-Cotta/Springer-Verlag

Gruß
Sigrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de