www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Charakteristik
Charakteristik < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Charakteristik: Teilbarkeitsbewies
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:48 Mi 24.11.2010
Autor: clemenum

Aufgabe
Sei $R$ ein KRE
a) Zeige, dass für [mm] $S\le [/mm] R$ gilt: $char(S)|char(R)$
b) Ist $char(R)=p$, so ist [mm] $Frob_p$ [/mm] ein Ringhomomorphismus

Ich habe das mit der Definition der Charakteristik versucht zu zeigen, aber es gelingt nicht, ich denke, man braucht hier mehr Informationen als lediglich die Definition. Weiß einer von euch hier weiter?

        
Bezug
Charakteristik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Mi 24.11.2010
Autor: felixf

Moin!

> Sei [mm]R[/mm] ein KRE

Was ist ein KRE? Kommutativer Ring mit Eins?

> a) Zeige, dass für [mm]S\le R[/mm] gilt: [mm]char(S)|char(R)[/mm]

Bedeutet $S [mm] \le [/mm] R$, dass $S$ ein Unterring von $R$ ist?

> b) Ist [mm]char(R)=p[/mm], so ist [mm]Frob_p[/mm] ein Ringhomomorphismus

Ich vermute mal, $p$ soll hier eine Primzahl sein.

>  Ich habe das mit der Definition der Charakteristik

Wie lautet die bei euch?

> versucht zu zeigen, aber es gelingt nicht, ich denke, man
> braucht hier mehr Informationen als lediglich die
> Definition. Weiß einer von euch hier weiter?  

Also mit der mir bekannten Definition kommt man hier ziemlich weit. Du solltest erstmal meine obigen Nachfragen klaeren, dann kann ich dir auch weiterhelfen.

LG Felix


Bezug
                
Bezug
Charakteristik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 Mi 24.11.2010
Autor: clemenum

Hi!

KRE = Kommutativer Ring mit Eins

Ja, [mm] $S\leR$ [/mm] bedeutet Teilring.  
Ja, dieses $p$ ist eine Primzahl.

"Unsere" Definition von Charakteristik:
Sei R ein unitärer Ring. Dann heißt

char (R) = 0, falls [mm] $\mathbb{P}(R)\cong \mathbb{Z} [/mm]

char(R) = $n$ falls [mm] $\mathbb{P}(R)\cong \mathbb{Z}/n\mathbb{Z}$ [/mm]  


Bezug
                        
Bezug
Charakteristik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Mi 24.11.2010
Autor: felixf

Moin!

> KRE = Kommutativer Ring mit Eins
>
> Ja, [mm]S\le R[/mm] bedeutet Teilring.  

Muessen beide die gleiche 1 haben? Wenn ja, dann ist Teil a) der Aufgabenstellung etwas komisch.

> Ja, dieses [mm]p[/mm] ist eine Primzahl.
>
> "Unsere" Definition von Charakteristik:
> Sei R ein unitärer Ring. Dann heißt
>
> char (R) = 0, falls [mm]$\mathbb{P}(R)\cong \mathbb{Z}[/mm]
>
> char(R) = [mm]n[/mm] falls [mm]\mathbb{P}(R)\cong \mathbb{Z}/n\mathbb{Z}[/mm]

Und [mm] $\mathbb{P}(R)$ [/mm] ist der Primring von $R$, also [mm] $\mathbb{P}(R) [/mm] = [mm] \{ n \cdot 1_R \mid n \in \IZ \}$. [/mm]

Gut.

Also:

Zu a): die Charakteristik ist die Ordnung von 1 in der additiven Gruppe. Du musst also zeigen, dass $char(R) [mm] \cdot 1_S [/mm] = 0$ ist. Zeige dafuer, dass fuer jedes Element $x [mm] \in [/mm] R$ gilt $char(R) [mm] \cdot [/mm] x = 0$.

Zu b): wenn $char(R) = p$ ist, folgt fuer $n [mm] \in \IZ$: [/mm] ist $n$ durch $p$ teilbar, so ist $n [mm] \cdot [/mm] x = 0$ fuer alle $x [mm] \in [/mm] R$.

Damit [mm] $Frob_p$ [/mm] ein Ringhomomorphismus ist, muss [mm] $Frob_p(x [/mm] + y) = [mm] Frob_p(x) [/mm] + [mm] Frob_p(y)$ [/mm] gelten, also $(x + [mm] y)^p [/mm] = [mm] x^p [/mm] + [mm] y^p$. [/mm] Du kannst jetzt $(x + [mm] y)^p$ [/mm] mit dem Binomischen Lehrsatz ausschreiben. Damit dies gleich [mm] $x^p [/mm] + [mm] y^p$ [/mm] ist, muessen also alle anderen Terme verschwinden. Zeige, dass die entsprechenden Binomialkoeffizienten durch $p$ teilbar sind.

LG Felix


Bezug
                                
Bezug
Charakteristik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Mi 24.11.2010
Autor: clemenum

Zu a):
Es gilt für alle [mm] $x\in [/mm] R$:
[mm] $px=p\cdot(1x)=(p1)x=0x=0$ [/mm]

Reicht dies?

Zu b)
[mm] $Frob_p(x+y)=(x+y)^p=\sum_{i=0}^p {p\choose i} x^i y^{p-i}=x^p+y^p+p(...)=x^p+y^p [/mm] = [mm] Frob_p(x)+Frob_p(y) [/mm] , also Ringhomomorphismus...

ist das genug?  

Bezug
                                        
Bezug
Charakteristik: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Mi 24.11.2010
Autor: felixf

Moin!

> Zu a):
> Es gilt für alle [mm]x\in R[/mm]:
> [mm]px=p\cdot(1x)=(p1)x=0x=0[/mm]
>
> Reicht dies?

Ist $p = char(R)$? Dann zeigt das: $char(R) x = 0$ fuer alle $x [mm] \in [/mm] R$.

Damit die Behauptung aus der Aufgabenstellung folgt, musst du natuerlich noch etwas mehr argumentieren, siehe dazu meine Antwort.

> Zu b)
> [mm]$Frob_p(x+y)=(x+y)^p=\sum_{i=0}^p {p\choose i} x^i y^{p-i}=x^p+y^p+p(...)=x^p+y^p[/mm]
> = [mm]Frob_p(x)+Frob_p(y)[/mm] , also Ringhomomorphismus...
>
> ist das genug?    

Wenn du begruendest, warum [mm] $\binom{p}{i}$ [/mm] durch $p$ teilbar ist fuer $0 < i < p$, reicht es theoretisch aus.

Ob dein Uebungsleiter eine so knappe Loesung akzeptiert, steht allerdings auf einem ganz anderen Stern.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de