www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Chi-Quadrat-Test?
Chi-Quadrat-Test? < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Chi-Quadrat-Test?: Wie p schätzen?
Status: (Frage) beantwortet Status 
Datum: 22:50 Di 17.07.2012
Autor: dennis2

Aufgabe
Fünf Münzen mit gleichem, aber unbekannten p (p ist die Wahrscheinlichkeit für "Kopf") werden zusammen hundertmal geworfen. Es ergeben sich folgende Häufigkeiten:

Anzahl der "Köpfe":   0   1   2   3   4   5
Häufigkeiten:   3   16   36    32   11   2

Testen Sie die Hypothese, daß die Anzahl der Köpfe pro Wurf binomialverteilt ist [mm] ($\alpha=0.05$). [/mm]



aus: Büning/ Trenkler, "Nichtparametrische statistische Methoden", 2., völlig neu überarbeitete Auflage, S. 112/ 113







Hallo!

Also ich verstehe die Aufgabe so:

Es beschreiben [mm] $X_i=\begin{cases}1, & \mbox{Kopf}\\0, & \mbox{Zahl}\end{cases}$ [/mm] für [mm] $i=1,\hdots,5$ [/mm] die Ausgänge der fünf Münzen, wobei dann [mm] $X_i\sim_{iid}\operatorname{Bin}(1,p)$ [/mm] gilt

Die Nullhypothese lautet nun:

[mm] $H_0: Y:=\sum\limits_{i=1}^{5}X_i\sim\operatorname{Bin}(5,p)$ [/mm]

Die Alternativhypothese lautet:

[mm] $H_1: Y\not\sim\operatorname{Bin}(5,p)$ [/mm]



Ich würde einen [mm] $\chi^2$-Anpassungstest [/mm] machen. Mein Problem ist, daß ich nicht weiß, wie ich hier $p$ schätzen kann.

Hat jemand eine Idee?

Ich dachte zuerst an den Maximum-Likelihood-Schätzer

[mm] $p_{ML}=\overline{X}$, [/mm] also an das arithmetische Mittel, aber ich kann das hier irgendwie nicht anwenden:

Was soll hier das arithmetische Mittel sein?


Edit: Achso, mir ist gerade eingefallen, daß man vielleicht die 100 Würfe mit jeweils 5 Münzen einfach als 500 Einzelwürfe betrachten kann und dann wäre

[mm] $p_{ML}=\frac{1}{500}\sum\limits_{i=1}^{500}x_i=\frac{1}{500}(3\cdot 0+1\cdot 16+2\cdot 36+3\cdot 32+4\cdot 11+5\cdot [/mm] 2)=0.476$

Mit diesem geschätzten $p$ käme ich dann für die Teststatistik auf einen Wert von 146,27.

Damit würde der kritische Wert [mm] $\chi^2_{0.95; 4}=0.711$ [/mm] ja deutlich überschritten, das heißt, die Nullhypothese ist abzulehnen.


Der Unterschied von 146,27 und 0,711 kommt mir aber denn noch etwas zu groß vor, als daß ich glaube, daß ich Recht habe mit meinen Ergebnissen.

Liebe Grüße,

Dennis

        
Bezug
Chi-Quadrat-Test?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:20 Mi 18.07.2012
Autor: luis52


>  
> Mit diesem geschätzten [mm]p[/mm] käme ich dann für die
> Teststatistik auf einen Wert von 146,27.

Moin, und ich erhalte 1.5132...

vg Luis




Bezug
                
Bezug
Chi-Quadrat-Test?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:29 Mi 18.07.2012
Autor: dennis2

  
> Moin, und ich erhalte 1.5132...


Mit denselben Zahlen, die ich benutze?

Da muss ich mich ja gewaltig verrechnet haben. Ich rechne nochmal nach. :-)



Edit: Ich habe es jetzt auch heraus.

Mein Fehler war, daß ich jeweils die Verteilungsfunktion genommen habe!

Also ich hatte zum Beispiel gerechnet:

[mm] $\tilde{n_2}=100\cdot \left(\binom{5}{0}0.476^00.524^5+\binom{5}{1}0.476^10.524^4\right)$, [/mm] statt einfach nur


[mm] $\tilde{n_2}=100\cdot\binom{5}{1}0.476^10.524^4$ [/mm]



Vielen lieben Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de