www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Chi Quadrat Anpassungstest
Chi Quadrat Anpassungstest < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Chi Quadrat Anpassungstest: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:50 So 14.09.2014
Autor: ATDT

Aufgabe
Von einer Zufälligen Anzahl werden folgende Daten erhoben:

Anzahl        1   2   3,4   5,...
Häufigkeit   39  23   26    12

Überprüfen Sie zu einem Signifikanzniveau [mm] \alpha [/mm] = 1% mittels des Chi-Quadrat-Anpassungstests, ob die Beobachtung der Vermutung, die zufällige Anzahl ist [mm] Geo(\bruch{1}{2})-verteilt, [/mm] widerspricht. Bestimmen Sie den p-Wert.

Liebe Forenteilnehmer,

Als Nullhypothese habe ich folgendes aufgestellt:
[mm] H_{0} [/mm] = Zufällige Anzahl ist [mm] Geo(\bruch{1}{2})-verteilt [/mm]

Die Alternativhypothese entsprechend:
[mm] H_{A} [/mm] = Zufällige Anzahl ist nicht [mm] Geo(\bruch{1}{2})-verteilt. [/mm]

Zu diesen Daten habe ich den X²-Wert mit Signifikanzniveau 1% aus der Tabelle ermittelt (Freiheitsgrad = 3) sowie den aus den gegebenen Daten ermittelten X²-Wert.

[mm] X^{2}_{0.01} [/mm] = 11,345
X² = 17,18

Da 17,18 > 11,345 kann die Nullhypothese verworfen werden.

Sind die Ergebnisse soweit korrekt und wäre die Aufgabe damit gelöst? Danke euch im voraus

        
Bezug
Chi Quadrat Anpassungstest: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 So 14.09.2014
Autor: luis52


> Von einer Zufälligen Anzahl werden folgende Daten
> erhoben:
>  
> Anzahl        1   2   3,4   5,...
>  Häufigkeit   39  23   26    12
>  
> Überprüfen Sie zu einem Signifikanzniveau [mm]\alpha[/mm] = 1%
> mittels des Chi-Quadrat-Anpassungstests, ob die Beobachtung
> der Vermutung, die zufällige Anzahl ist
> [mm]Geo(\bruch{1}{2})-verteilt,[/mm] widerspricht. Bestimmen Sie den
> p-Wert.
>  Liebe Forenteilnehmer,
>  
> Als Nullhypothese habe ich folgendes aufgestellt:
>  [mm]H_{0}[/mm] = Zufällige Anzahl ist [mm]Geo(\bruch{1}{2})-verteilt[/mm]
>  
> Die Alternativhypothese entsprechend:
>  [mm]H_{A}[/mm] = Zufällige Anzahl ist nicht
> [mm]Geo(\bruch{1}{2})-verteilt.[/mm]
>  
> Zu diesen Daten habe ich den X²-Wert mit Signifikanzniveau
> 1% aus der Tabelle ermittelt (Freiheitsgrad = 3) sowie den
> aus den gegebenen Daten ermittelten X²-Wert.
>  
> [mm]X^{2}_{0.01}[/mm] = 11,345
>  X² = 17,18
>  
> Da 17,18 > 11,345 kann die Nullhypothese verworfen werden.
>
> Sind die Ergebnisse soweit korrekt

Ja.

> und wäre die Aufgabe
> damit gelöst?

Nein, der p-Wert fehlt.


Bezug
                
Bezug
Chi Quadrat Anpassungstest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 So 14.09.2014
Autor: ATDT

Ok nur wie errechne ich den p-Wert? Ich habe etwas in einem anderen Beitrag gelesen, dass man (in meinem Fall) an der Stelle X² = 17,18 einen Wert aus der Tabelle ablesen kann. Der p-Wert soll dann 1-"diesen Wert" sein? Das habe ich aber nicht richtig verstanden. Ich habe eine Tabelle mit den Quantilen der Chi-Quadrat-Verteilung vor mir liegen. Allerdings sind die Werte allesamt höher als 1. Was mit der oben genannten Methode keinen Sinn ergibt.

Bitte um eure Hilfe damit ich diese Art von Aufgaben abhaken kann. Wie errechne ich den p-Wert?

Danke im voraus



Bezug
                        
Bezug
Chi Quadrat Anpassungstest: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 So 14.09.2014
Autor: luis52

Moin, bei der Testentscheidung hast du dich ja anscheinend an einer [mm] $\chi^2(3)$-Verteilung [/mm] orientiert. Der p-Wert ist die  Wahrscheinlichkeit [mm] $P(\chi^2(3)\ge17.18)$. [/mm]

Bezug
                                
Bezug
Chi Quadrat Anpassungstest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 Mo 15.09.2014
Autor: ATDT

Danke für deine Antwort. Bitte erkläre mir wieso der p-wert [mm] P(X^2_{(3)} \ge [/mm] 17.18) ist?

Also warum größer oder gleich 17.18? Mein  Chi-Quadrat-Wert [mm] X^2 [/mm] = 17.18 ist doch größer und nicht kleiner als der Chi-Quadrat-Wert 11.345 (aus der Tabelle, Freiheitsgrad n=3 und [mm] \alpha [/mm] = 0.99 (1%))

Danke im voraus


Bezug
                                        
Bezug
Chi Quadrat Anpassungstest: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Mo 15.09.2014
Autor: luis52


> Danke für deine Antwort. Bitte erkläre mir wieso der
> p-wert [mm]P(X^2_{(3)} \ge[/mm] 17.18) ist?
>  
> Also warum größer oder gleich 17.18? Mein  
> Chi-Quadrat-Wert [mm]X^2[/mm] = 17.18 ist doch größer und nicht
> kleiner als der Chi-Quadrat-Wert 11.345 (aus der Tabelle,
> Freiheitsgrad n=3 und [mm]\alpha[/mm] = 0.99 (1%))
>

Ich fuerchte, dass ich dir kein Tutorium zur Vorgehensweise bei der Uebrpruefung statistischer Hypothesen bieten kann. Vielleicht googelst du mal level of significance und p-value.


Bezug
                                        
Bezug
Chi Quadrat Anpassungstest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 Fr 19.09.2014
Autor: ATDT

Ich muss noch einmal nachfragen. Wer kann mir hierzu weiter helfen? Ich verstehe es leider nicht. Wie kommt man auf den p-Wert?

Danke schon mal

Bezug
                                                
Bezug
Chi Quadrat Anpassungstest: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Fr 19.09.2014
Autor: hanspeter.schmid

Ich schlage vor, Du schreibst mal genau auf, was Du bisher gerechnet hast, und wo Du stecken bleibst. Ich weiss, dass das einige Arbeit gibt, aber nur so können wir Dir anders helfen als Dir Lesematerial empfehlen.

Falls Dir Lesematerial reicht: []http://de.wikipedia.org/wiki/P-Wert

Bezug
                
Bezug
Chi Quadrat Anpassungstest: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:45 Mo 15.09.2014
Autor: hanspeter.schmid


> > Als Nullhypothese habe ich folgendes aufgestellt:
> >  [mm]H_{0}[/mm] = Zufällige Anzahl ist [mm]Geo(\bruch{1}{2})-verteilt[/mm]

> >  

> > Die Alternativhypothese entsprechend:
> >  [mm]H_{A}[/mm] = Zufällige Anzahl ist nicht [mm]Geo(\bruch{1}{2})-verteilt.[/mm]

> >  


Ich habe jetzt doch eine Frage:

[mm] $H_0$ [/mm] ist jetzt eine Hypothese, dass die W'keitsverteilung eine bestimmte Funktion $g[.]$ aus einem unabzählbar unendlich grossen Funktionsraum aller möglichen diskreten W'keitsverteilungen ist.

[mm] $H_A$ [/mm] ist die Hypothese, dass es irgend eine andere Funktion ist, insbesondere könnte es [mm] $(1-\epsilon)g[.]+\epsilon [/mm] h[.]$ für ein beliebiges $h[.]$ und ein beliebig kleines [mm] $\epsilon$ [/mm] sein. Oder auf Deutsch: falls es nicht absolut exakt die geometrische Verteilung ist, trifft schon [mm] $H_A$ [/mm] zu.

Wieso kann da überhaupt eine nichtverschwindende W'keit für [mm] $H_0$ [/mm] herauskommen?



Bezug
                        
Bezug
Chi Quadrat Anpassungstest: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mi 17.09.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de