www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematik-Wettbewerbe" - China die letzte!
China die letzte! < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

China die letzte!: Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 16:16 So 26.12.2004
Autor: Hanno

Hallo nochmals!

So, und nun die allerletzte Aufgabe! Los geht's:

Finde alle Funktionen [mm] $f:[1,\infty )\to [1,\infty [/mm] )$, die den folgenden Bedingungen genügen:
[mm] $f(x)\leq [/mm] 2(x+1)$
[mm] $f(x+1)=\frac{1}{x}\cdot\left( f^2(x)-1\right)$ [/mm]

Liebe Grüße und nun viel Spaß beim Rechnen! Ich hoffe auf rege Teilnahme :-)

Hanno

        
Bezug
China die letzte!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Fr 04.02.2005
Autor: g3mini

Hallo:
[mm] f'(x) = f'(x+1) = 1/x^2 (1-f^2(x)) +2/xf'(x)\\ \Rightarrow \frac{f'(x)}{1-f^2(x)} = \frac{1}{x^2-2x} [/mm]
Lösen der DGL ergibt:
[mm] f(x) = \frac{2}{(x-2)x^{-1}c-1}+1 [/mm]
c ist dann über die zwei gegebenen Bedingungen zu suchen...(könnte ja jemand anders machen (-; )

Bezug
                
Bezug
China die letzte!: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Fr 04.02.2005
Autor: Stefan

Hallo!

Nein, das kann man so  nicht machen. Erstens stimmen die Gleichungen zum Teil nicht, zweitens steht nirgendswo geschrieben, dass differenzierbare Funktionen gesucht sind.

Aber trotzdem Danke für den Versuch! :-)

Viele Grüße
Stefan

Bezug
        
Bezug
China die letzte!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:50 So 06.02.2005
Autor: Martin243

Hi,

hier mein Versuch:

Eine Funktion, die diese Bedingungen erfüllt, ist die Nachfolgerfunktion f(x) = x+1:
1. f(x) = x+1 < x+1 + x+1 = 2(x+1) [mm] \forall x\ge [/mm] 1
2. [mm] \bruch{1}{x}(f^{2}(x)-1) [/mm] = [mm] \bruch{1}{x}(x^{2}+2x+1-1) [/mm] = [mm] \bruch{x^{2}+2x}{x} [/mm] = x+2 = f(x+1)

Außerdem bildet die Funktion den Definitionsbereich auf [mm] [2;\infty) \subset [1;\infty) [/mm] ab.


Nun muss ich natürlich zeigen, dass es keine andere Funktion g dieser Art gibt. Dies tu ich, indem ich die Rekursion ausnutze, die dazu führt, dass eine kleine Abweichung von der Nachfolgerfunktion an einer Stelle zu immer größeren Abweichungen an späteren Stellen führt, so dass am Ende entweder Werte g(x)<1 oder g(x)>2(x+1) auftauchen.


Sei also an einer Stelle [mm] a\in [1;\infty) [/mm] der Funktionswert g(a) = [mm] f(a)+\varepsilon (\varepsilon>0). [/mm]
Dann gilt:
g(a+1) = [mm] \bruch{1}{a}(g^{2}(a)-1) [/mm]
= [mm] \bruch{1}{a}((f(a)+\varepsilon)^{2}-1) [/mm]
= [mm] bruch{1}{a}((f^{2}(a)+2f(a)\varepsilon+\varepsilon^{2}-1) [/mm]
= [mm] bruch{1}{a}(a^{2}+2a+1+2a\varepsilon+2\varepsilon+\varepsilon^{2}-1) [/mm]
= [mm] a+2+2\varepsilon+2\bruch{\varepsilon}{a}+\bruch{\varepsilon^{2}}{a} [/mm]

> [mm] f(a+1)+2\varepsilon [/mm]

Man sieht, dass sich die Abweichung bei Addition von 1 immer mindestens verdoppelt. Durch das exponentielle Wachstum dieser Abweichung würde die Bedingung g(x) [mm] \le [/mm] 2(x+1) (nur linear) für ein genügend großes x verletzt (das ohne Beweis...)

Analoges gilt, falls g(a) = [mm] f(a)[b]-\varepsilon[/b]. [/mm] Dann wird irgendwann die Bedingung g(x) [mm] \ge [/mm] 1 verletzt.


Also ist die Nachfolgerfunktion die einzige Funktion mit obigen Eigenschaften.


MfG
Martin

Bezug
                
Bezug
China die letzte!: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Mo 14.02.2005
Autor: Hanno

Hallo Martin!

Ein wenig unsauber ist es schon, aber ich glaube, dass die Grundidee die richtige ist. Auch wenn es nicht so schön ist, das hier ein wenig abzuwürgen, so stufe ich in der Annahme, dass deine Ausführungen nach einer formelleren Beschreibung zum Ziel führen, diese Aufgabe als gelöst ein.

Schön!

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de