www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Codierungsth. Kugelpackungen
Codierungsth. Kugelpackungen < Sonstiges < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Codierungsth. Kugelpackungen: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:52 So 09.11.2014
Autor: riju

Aufgabe
Seinen K ein Alphabet und r [mm] \in \IN_{0}. [/mm] Für u [mm] \in K^{n} [/mm] definiert [mm] B_{r}(u)={v|v \in K^{n}, d(u,v) \le r} [/mm] die Kugel vom Radius r um den Mittelpunkt u in [mm] K^{n}. [/mm] Ist |K|=q, so gilt [mm] |B_{r}(u)|=\summe_{j=0}^{r}\vektor{n\\ j}(q-1)^{j}, [/mm] denn |{v|v [mm] \in K^{n}, d(u,v)=j}|=\vektor{n\\ j}(q-1)^{j}. [/mm] Insbesondere ist also [mm] |B_{r}(u)| [/mm] unabhängig vom Mittelpunkt u.

Beweisen Sie: [mm] |B_{r}(u)|=\summe_{j=0}^{r}\vektor{n\\ j}(q-1)^{j} [/mm]

Ich weiß jetzt nicht so richtig, wie ich das Beweisen soll. Ich weiß, dass es für j Fehlerstellen, j aus n mögliche Positionen für die Fehler gibt. Dabei stehen pro Fehlerstelle q-1 falsche Symbole zur Verfügung. Aber weiter weiß ich leider nicht.
Hat jemand einen Tipp?

Vielen Dank im Voraus.
Liebe Grüße
riju

        
Bezug
Codierungsth. Kugelpackungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Mo 10.11.2014
Autor: felixf

Moin riju!

> Seinen K ein Alphabet und r [mm]\in \IN_{0}.[/mm] Für u [mm]\in K^{n}[/mm]
> definiert [mm]B_{r}(u)={v|v \in K^{n}, d(u,v) \le r}[/mm] die Kugel
> vom Radius r um den Mittelpunkt u in [mm]K^{n}.[/mm] Ist |K|=q, so
> gilt [mm]|B_{r}(u)|=\summe_{j=0}^{r}\vektor{n\\ j}(q-1)^{j},[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> denn |{v|v [mm]\in K^{n}, d(u,v)=j}|=\vektor{n\\ j}(q-1)^{j}.[/mm]
> Insbesondere ist also [mm]|B_{r}(u)|[/mm] unabhängig vom
> Mittelpunkt u.
>  
> Beweisen Sie: [mm]|B_{r}(u)|=\summe_{j=0}^{r}\vektor{n\\ j}(q-1)^{j}[/mm]

Setzen wir doch mal [mm] $R_j(u) [/mm] := [mm] \{ v \mid v \in K^n, \; d(u, v) = j \}$ [/mm] fuer ein beliebiges $j [mm] \in \IN$. [/mm]

> Ich weiß jetzt nicht so richtig, wie ich das Beweisen
> soll. Ich weiß, dass es für j Fehlerstellen, j aus n
> mögliche Positionen für die Fehler gibt. Dabei stehen pro
> Fehlerstelle q-1 falsche Symbole zur Verfügung.

Das zeigt [mm] $|R_j(u)| [/mm] = [mm] \binom{n}{j} [/mm] (q - [mm] 1)^j$. [/mm] Oder?

Jetzt musst du zeigen, dass [mm] $B_r(u)$ [/mm] die disjunkte Vereinigung von [mm] $R_0(u), R_1(u), \dots, R_r(u)$ [/mm] ist. Daraus folgt dann die Formel fuer [mm] $|B_r(u)|$. [/mm]

LG Felix


Bezug
                
Bezug
Codierungsth. Kugelpackungen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:53 Di 11.11.2014
Autor: riju

Das hab ich soweit verstanden.
Eine Menge X ist die disjunkte Vereinigung, wenn [mm] X_{i} \bigcap X_{j} [/mm] = [mm] \emptyset, [/mm] für [mm] i\not=j [/mm] gilt. Das heißt die [mm] X_{i} [/mm] sind also paarweise disjunkt. Außerdem muss ja gelten, dass [mm] X=\bigcup_{i \in I} X_{i}. [/mm] Das heißt X ist die Vereinigung aller Mengen [mm] X_{i}. [/mm]

Also wie zeige ich dann, dass [mm] R_{i}(u) \bigcap R_{j} [/mm] gilt für i [mm] \not= [/mm] j?

Vielen Dank im Voraus.

Lg riju

Bezug
                        
Bezug
Codierungsth. Kugelpackungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Di 11.11.2014
Autor: riju

Also [mm] R_{i}(u) \cap R_{j}(u) [/mm] = { v|v [mm] \in K^{n}, [/mm] d(u,v)=i [mm] \wedge [/mm] d(u,v)=j }. Das müsste doch laut Definition des Durchschnitts rauskommen oder? Der Abstand von u und v kann ja nur i und j gleichzeitig sein, wenn i=j ist. Da aber gelten muss das [mm] i\not=j [/mm] ist, kann es diesen Durchschnitt niemals geben. Also ist der Durchschnitt für [mm] i\not=j [/mm] immer disjunkt. Oder seh ich das falsch?

Bezug
                                
Bezug
Codierungsth. Kugelpackungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Di 11.11.2014
Autor: felixf

Moin!

> Also [mm]R_{i}(u) \cap R_{j}(u)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= { v|v [mm]\in K^{n},[/mm] d(u,v)=i

> [mm]\wedge[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

d(u,v)=j }. Das müsste doch laut Definition des

> Durchschnitts rauskommen oder?

Genau.

> Der Abstand von u und v kann
> ja nur i und j gleichzeitig sein, wenn i=j ist. Da aber
> gelten muss das [mm]i\not=j[/mm] ist, kann es diesen Durchschnitt
> niemals geben.

Doch: es gibt den Durchschnitt. Was du sagen willst; da ist nichts drinnen. Sprich, er ist leer.

> Also ist der Durchschnitt für [mm]i\not=j[/mm] immer
> disjunkt.

Der Durchschnitt ist nicht diskunkt sondern leer; die beiden Mengen sind disjunkt :-)

> Oder seh ich das falsch?

Nein, du hast es nur etwas ungenau ausgedrückt :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de